Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification
"> Figure 1
<p>The framework of proposed multi-scale graph-based feature fusion model.</p> "> Figure 2
<p>The structure of the backbone.</p> "> Figure 3
<p>The structure of the extraction of multi-scale features.</p> "> Figure 4
<p>Datasets utilized in the experiments, (<b>a</b>) images of NWPU-RESISC45 dataset, (<b>b</b>) images of WHU-RS19 dataset.</p> "> Figure 5
<p>Confusion matrices of our proposed model with different conditions on two datasets. (<b>a</b>) the confusion matrix on the NWPU-RESISC45 of 5-way 1-shot case, (<b>b</b>) the confusion matrix on the NWPU-RESISC45 of 5-way 5-shot case, (<b>c</b>) the confusion matrix on the WHU-RS19 of 5-way 1-shot case, and (<b>d</b>) the confusion matrix on the WHU-RS19 of 5-way 5-shot case.</p> "> Figure 6
<p>Comparisons of different types of features on two datasets. (<b>a</b>) shows the test results on the NWPU-RESISC45 dataset with different types of features, (<b>b</b>) shows the test results on the WHU-RS19 dataset with different types of features.</p> "> Figure 7
<p>Comparisons of different scales of features on two datasets. (<b>a</b>) shows the test results on the NWPU-RESISC45 dataset with different scales of features, (<b>b</b>) shows the test results on the WHU-RS19 dataset with different scales of features.</p> "> Figure 8
<p>Analysis with different values of <span class="html-italic">k</span> on two datasets. (<b>a</b>) shows the test results on the NWPU-RESISC45 dataset with different values of <span class="html-italic">k</span>, (<b>b</b>) shows the test results on the WHU-RS19 dataset with different values of <span class="html-italic">k</span>.</p> "> Figure 9
<p>Accuracy with different values of <math display="inline"><semantics> <msub> <mi>α</mi> <mi>i</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mi>i</mi> </msub> </semantics></math> on two datasets. (<b>a</b>,<b>b</b>) the results on the NWPU-RESISC45 under the condition of 5-way 1-shot and 5-way 5-shot, respectively. (<b>c</b>,<b>d</b>) the results on the WHU-RS19 under the condition of 5-way 1-shot and 5-way 5-shot, respectively.</p> "> Figure 10
<p>Accuracy with different numbers of shot on two datasets.</p> ">
Abstract
:1. Introduction
- A graph-based feature learning model is developed to learn features from remote sensing images firstly, which enables to effectively express the spatial relations among remote sensing images. It is able to take advantage of relation information for scene classification, which is beneficial to few-shot scene classification.
- A graph-based feature fusion model is proposed, which can integrate graph-based features of multiple scales. It is able to enhance sample discrimination based on different scale features, which integrates more abundant and effective semantic information. The proposed model can take full advantage of image features to improve few-shot classification accuracies, which reduces the influence of inconsistent semantic information.
- Experimental results on two public remote sensing data illustrate that the proposed MGFF yield an improvement of classification accuracy about 2–10% contrast to other advanced methods, which proves the efficacy of our MGFF model.
2. Related Works
2.1. Remote Sensing Image Scene Classification
2.2. Few-Shot Learning
2.3. Graph Learning
3. Methodology
3.1. Problem Formulation
3.2. Extraction of Multi-Scale Features
3.3. Construction of Graph-Based Features
3.4. Fusion of Multi-Scale Graph-Based Features
4. Results
4.1. Datasets
4.2. Experimental Settings
4.3. Comparisons with the State-of-the-Art Approaches
5. Discussions
5.1. Effect of Graph-Based Features
5.2. Effect of Multi-Scale Feature Fusion Strategy
5.3. Discussions of Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, X.; Han, J.; Cheng, G.; Qian, X.; Guo, L. Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3660–3671. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, W.; Chen, L.; Li, H. MKN: Metakernel networks for few shot remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2108–2123. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Chen, S.W.; Cui, X.C.; Wang, X.S.; Xiao, S.P. Speckle-free SAR image ship detection. IEEE Trans. Image Process. 2021, 30, 5969–5983. [Google Scholar] [CrossRef]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, Beijing, China, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Shao, W.; Yang, W.; Xia, G.S. Extreme value theory-based calibration for the fusion of multiple features in high-resolution satellite scene classification. Int. J. Remote Sens. 2013, 34, 8588–8602. [Google Scholar] [CrossRef]
- Negrel, R.; Picard, D.; Gosselin, P.H. Evaluation of second-order visual features for land-use classification. In Proceedings of the 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI), Klagenfurt, Austria, 18–20 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Zhao, L.; Tang, P.; Huo, L. A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification. Int. J. Remote Sens. 2014, 35, 2296–2310. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Penatti, O.A.; Nogueira, K.; Dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 44–51. [Google Scholar]
- Chen, S.W.; Tao, C.S. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Shawky, O.A.; Hagag, A.; El-Dahshan, E.S.A.; Ismail, M.A. Remote sensing image scene classification using CNN-MLP with data augmentation. Optik 2020, 221, 165356. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, J.; Ding, B. Acoustic scene classification using deep CNN with fine-resolution feature. Expert Syst. Appl. 2020, 143, 113067. [Google Scholar] [CrossRef]
- Khan, A.; Chefranov, A.; Demirel, H. Image scene geometry recognition using low-level features fusion at multi-layer deep CNN. Neurocomputing 2021, 440, 111–126. [Google Scholar] [CrossRef]
- Mcilwaine, B.; Casado, M.R. JellyNet: The convolutional neural network jellyfish bloom detector. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102279. [Google Scholar] [CrossRef]
- Gidaris, S.; Bursuc, A.; Komodakis, N.; Pérez, P.; Cord, M. Boosting few-shot visual learning with self-supervision. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 8059–8068. [Google Scholar]
- Chu, W.H.; Li, Y.J.; Chang, J.C.; Wang, Y.C.F. Spot and learn: A maximum-entropy patch sampler for few-shot image classification. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6251–6260. [Google Scholar]
- Cheng, G.; Han, J.; Guo, L.; Liu, Z.; Bu, S.; Ren, J. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4238–4249. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.W. SAR image speckle filtering with context covariance matrix formulation and similarity test. IEEE Trans. Image Process. 2020, 29, 6641–6654. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Zhu, S.; Du, B.; Zhang, L.; Li, X. Attention-based multiscale residual adaptation network for cross-scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, G.; Shu, J. A lightweight and robust lie group-convolutional neural networks joint representation for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Ning, C.; Zhou, H. Enhanced feature pyramid network with deep semantic embedding for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7918–7932. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, X.; Yuan, Y. Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5148–5157. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Lu, X.; Gong, T.; Zheng, X. Multisource compensation network for remote sensing cross-domain scene classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2504–2515. [Google Scholar] [CrossRef]
- Nogueira, K.; Penatti, O.A.; Dos Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1155–1167. [Google Scholar] [CrossRef]
- Tang, X.; Lin, W.; Ma, J.; Zhang, X.; Liu, F.; Jiao, L. Class-Level Prototype Guided Multiscale Feature Learning for Remote Sensing Scene Classification With Limited Labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Pires de Lima, R.; Marfurt, K. Convolutional neural network for remote-sensing scene classification: Transfer learning analysis. Remote Sens. 2019, 12, 86. [Google Scholar] [CrossRef]
- Zeng, Q.; Geng, J. Task-specific contrastive learning for few-shot remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2022, 191, 143–154. [Google Scholar] [CrossRef]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 2016, 29, 3637–3645. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4080–4090. [Google Scholar]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.H.; Hospedales, T.M. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1199–1208. [Google Scholar]
- Zhang, X.; Qiang, Y.; Sung, F.; Yang, Y.; Hospedales, T. RelationNet2: Deep comparison network for few-shot learning. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Alajaji, D.; Alhichri, H.S.; Ammour, N.; Alajlan, N. Few-shot learning for remote sensing scene classification. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 81–84. [Google Scholar]
- Jiang, W.; Huang, K.; Geng, J.; Deng, X. Multi-scale metric learning for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 1091–1102. [Google Scholar] [CrossRef]
- Cheng, G.; Cai, L.; Lang, C.; Yao, X.; Chen, J.; Guo, L.; Han, J. SPNet: Siamese-prototype network for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Zeng, Q.; Geng, J.; Jiang, W.; Huang, K.; Wang, Z. Idln: Iterative distribution learning network for few-shot remote sensing image scene classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Zhu, Z.; Chen, L.; Zhu, J.; Huang, H.; Tao, C. RS-MetaNet: Deep meta metric learning for few-shot remote sensing scene classification. arXiv 2020, arXiv:2009.13364. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Yao, X.; Cheng, G.; Guo, L. DLA-MatchNet for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7844–7853. [Google Scholar] [CrossRef]
- Zhai, M.; Liu, H.; Sun, F. Lifelong learning for scene recognition in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1472–1476. [Google Scholar] [CrossRef]
- Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML Deep Learning Workshop, Lille, France, 6–11 July 2015; Volume 2. [Google Scholar]
- Kim, J.; Kim, T.; Kim, S.; Yoo, C.D. Edge-labeling graph neural network for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 11–20. [Google Scholar]
- Gidaris, S.; Komodakis, N. Generating classification weights with gnn denoising autoencoders for few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 21–30. [Google Scholar]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871. [Google Scholar]
- Yuan, Z.; Huang, W.; Tang, C.; Yang, A.; Luo, X. Graph-Based Embedding Smoothing Network for Few-Shot Scene Classification of Remote Sensing Images. Remote Sens. 2022, 14, 1161. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Li, X.; Shi, D.; Diao, X.; Xu, H. SCL-MLNet: Boosting Few-Shot Remote Sensing Scene Classification via Self-Supervised Contrastive Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835. [Google Scholar]
- Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S.J.; Yang, Y. Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv 2018, arXiv:1805.10002. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
Datasets | Training | Validation | Testing |
---|---|---|---|
NWPU-RESISC45 | Sea ice; Beach; | ||
Rectangular farmland; | |||
Mountain; Stadium; | Storage tank; | Mid residential; | |
Cloud;Railway; | Power station; | River; | |
Ship; Desert; | Runway; | Intersection; | |
Forest; Island; | Sparse residential; | Dense residential; | |
Baseball Diamond; | Terrace; | Parking lot; | |
Lake; Meadow; | Railway station; | Golf course; | |
Snowberg; | Tennis Court; | Circle farmland; | |
Airplane; Palace; | Overpass; | Airport; | |
Ground field;Harbor; | Commerical area; | Freeway; | |
Bridge; Chaparral; | Industrial area; | Basketball court; | |
Church; Wetland; | |||
Mobile home park; | |||
WHU-RS19 | Park; | ||
Residential; | |||
Airport; | Farmland; | Viaduct; | |
Football field; | Railway station; | Mountain; | |
Meadow; | Port; | Pond; | |
Desert; | Forest; | Commerical; | |
Parking lot; | Beach; | River; | |
Bridge; | |||
Industrial; |
Parameters | Values |
---|---|
0.5 | |
learning rate | 0.001 |
batch size | 64 |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
SCL-MLNet [60] | 62.21 ± 1.12 | 80.86 ± 0.76 |
Meta-SGD [61] | 60.69 ± 0.72 | 75.72 ± 0.49 |
TPN [62] | 66.52 ± 0.76 | 78.47 ± 0.64 |
Relation Network [41] | 66.41 ± 0.48 | 78.53 ± 0.41 |
MAML [63] | 47.32 ± 0.10 | 63.03 ± 0.55 |
DLA-MatchNet [48] | 68.80 ± 0.70 | 81.63 ± 0.46 |
GES-Net [57] | 70.83 ± 0.85 | 82.27 ± 0.55 |
MGFF (Ours) | 75.09 ± 0.94 | 83.24 ± 0.65 |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
SCL-MLNet [60] | 63.36 ± 0.88 | 77.62 ± 0.81 |
Meta-SGD [61] | 51.59 ± 0.92 | 63.95 ± 0.87 |
TPN [62] | 59.24 ± 0.86 | 71.43 ± 0.67 |
Relation Network [41] | 60.88 ± 0.42 | 79.76 ± 0.67 |
MAML [63] | 51.06 ± 0.21 | 65.83 ± 0.17 |
DLA-MatchNet [48] | 68.27 ± 1.83 | 79.89 ± 0.33 |
GES-Net [57] | 75.84 ± 0.78 | 82.37 ± 0.38 |
MGFF (Ours) | 76.48 ± 0.96 | 84.86 ± 0.76 |
Indicators | NWPU-RESISC45 | WHU-RS19 | ||
---|---|---|---|---|
5-Way 1-Shot | 5-Way 5-Shot | 5-Way 1-Shot | 5-Way 5-Shot | |
PRE | 75.19 ± 0.96 | 83.75 ± 1.09 | 76.08 ± 1.16 | 84.97 ± 0.59 |
73.80 ± 0.62 | 82.85 ± 0.93 | 74.09 ± 1.08 | 83.52 ± 0.64 | |
ACC | 75.09 ± 0.94 | 83.24 ± 0.65 | 76.48 ± 0.96 | 84.86 ± 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Shi, H.; Geng, J. Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 5550. https://doi.org/10.3390/rs14215550
Jiang N, Shi H, Geng J. Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing. 2022; 14(21):5550. https://doi.org/10.3390/rs14215550
Chicago/Turabian StyleJiang, Nan, Haowen Shi, and Jie Geng. 2022. "Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification" Remote Sensing 14, no. 21: 5550. https://doi.org/10.3390/rs14215550
APA StyleJiang, N., Shi, H., & Geng, J. (2022). Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing, 14(21), 5550. https://doi.org/10.3390/rs14215550