Mapping Burned Areas with Multitemporal–Multispectral Data and Probabilistic Unsupervised Learning
<p>Proposed method workflow.</p> "> Figure 2
<p>Study area locations.</p> "> Figure 3
<p>Reference image (<b>left</b>) and the later instant (<b>right</b>—14 September 2020) for Area 1. Representations in natural color composition.</p> "> Figure 4
<p>Reference image (<b>left</b>) and the later instant (<b>right</b>—9 October 2020) for Area 2. Representations in natural color composition.</p> "> Figure 5
<p>Reference image (<b>left</b>) and the later instant (<b>right</b>—15 October 2020) for Area 3. Representations in natural color composition.</p> "> Figure 6
<p>Ground-truth samples for (<b>a</b>) Area 1, (<b>b</b>) Area 2, and (<b>c</b>) Area 3. Point-wise burning occurrences recorded from 1 August to 31 October 2020 [<a href="#B60-remotesensing-14-05413" class="html-bibr">60</a>].</p> "> Figure 7
<p>The NBR behavior for the reference image and individual instants regarding Area 1. Regions delimited by red rectangles highlight places with potential changes over time.</p> "> Figure 8
<p>The NBR behavior for the reference image and individual instants regarding Area 2. Regions delimited by red rectangles highlight places with potential changes over time.</p> "> Figure 9
<p>The NBR behavior for the reference image and individual instants regarding Area 3. Regions delimited by red rectangles highlight places with potential changes over time.</p> "> Figure 10
<p>The mapping of fire-affected locations provided by the (<b>a</b>) MTDNBR, (<b>b</b>) GKM, and (<b>c</b>) UFD+MRF methods for Area 1 using OLI data. Estimates from the MBA product are shown in (<b>d</b>). Representations comprise the analyzed period of 1 August to 31 October 2020.</p> "> Figure 11
<p>The mapping of fire-affected locations provided by the (<b>a</b>) MTDNBR, (<b>b</b>) GKM, and (<b>c</b>) UFD+MRF methods for Area 2 using MSI data. Estimates from the MBA product are shown in (<b>d</b>). Representations comprise the analyzed period of 1 August to 31 October 2020.</p> "> Figure 12
<p>The mapping of fire-affected locations provided by the (<b>a</b>) MTDNBR, (<b>b</b>) GKM, and (<b>c</b>) UFD+MRF methods for Area 3 using MODIS data. Estimates from the MBA product are shown in (<b>d</b>).</p> "> Figure 13
<p>True/false positive/negative detection proportions.</p> ">
Abstract
:1. Introduction
- A fully unsupervised methodology that unifies spectral indices, logistic regression, and Markov fandom fields into a spatial–temporal representation of burned areas;
- The proposed approach is capable of dealing with data acquired by sensors with distinct spatial radiometric resolutions;
- The proposed methodology retains some desirable features such as classification accuracy for images composed of different spatial resolutions, capability to handle severe imaging conditions such as cloud/shadow occurrences, and stability w.r.t. the systematic fire mapping task.
- Our computational approach is modular and, thus, flexible enough to be integrated with other learning models.
2. Background
2.1. Definitions and Notation
2.2. Spectral Indexes for Burnt Area Detection
2.3. Logistic Model
2.4. Iterated Conditional Modes
3. Method Proposal
3.1. Conceptual Formalization
3.1.1. Multitemporal NBR Computing
3.1.2. Spatio-Temporal Representation for
3.1.3. Deviation Analysis
3.1.4. Logistic Regression and MRF Modeling
3.2. Implementation Details
4. Experiments
4.1. Experiment Overview
4.2. Study Areas and Data Description
4.3. Results
4.4. Discussion
5. Conclusions
- A fully unsupervised learning formulation for discriminating and mapping burned areas using multispectral image time series;
- A conceptual formalization that can be conveniently customized for other remote sensing applications in addition to mapping fire-impacted areas;
- A comprehensive set of experiments and descriptive analyses using distinct sensors followed by quantitative and qualitative comparisons with existing methods from the specialized literature, thus advancing the field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RS | Remote Sensing |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
OLI | Operational Land Imager |
MSI | Multispectral Instrument |
NDVI | Normalized Difference Vegetation Index |
NBR | Normalized Burn Ratio |
BAIS | Burned Area Index for Sentinel |
NBR | Difference Normalized Burn Ratio |
RNBR | Relative NBR |
NDWI | Normalized Difference Water Index |
SAVI | Soil Adjusted Vegetation Index |
VIS | Visible Wavelength |
NIR | Near-Infrared Wavelength |
SWIR | Shortwave-infrared |
ICM | Iterated Conditional Modes |
MRF | Markov Random Field |
UFD | Unsupervised Fire Detection |
API-GEE | Application Programming Interface for Google Earth Engine |
IDL | Interactive Data Language |
MTDNBR | Multi-Temporal NBR |
GKM | Gholinejad–Khesali’s Method |
MBA | MODIS Burned Area |
TP/FP | True/False Positive |
TN/FN | True/False Negative |
MCC | Matthews Correlation Coefficient |
OA | Overall Accuracy |
References
- Luterbacher, J.; Paterson, L.; von Borries, R.; Solazzo, K.; Devillier, R.; Castonguay, S. United in Science 2021: A Multi-Organization High-Level Compilation of the Latest Climate Science Information; Technical Report; Partner Organizations: World Meteorological Organization (WMO), Global Carbon Project (GCP), Intergovernmental Panel on Climate Change (IPCC), United Nations Environment Programme (UNEP), World Health Organization (WHO), the Met Office (United Kingdom, UK); World Meteorological Organization (WMO): Geneva, Switzerland, 2021. [Google Scholar]
- Stott, P.A.; Christidis, N.; Otto, F.E.; Sun, Y.; Vanderlinden, J.P.; van Oldenborgh, G.J.; Vautard, R.; von Storch, H.; Walton, P.; Yiou, P. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 23–41. [Google Scholar] [CrossRef]
- Van Aalst, M.K. The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5–18. [Google Scholar] [CrossRef]
- AghaKouchak, A. A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought. J. Hydrol. 2015, 526, 127–135. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Multivariate drought index: An information theory based approach for integrated drought assessment. J. Hydrol. 2015, 526, 164–182. [Google Scholar] [CrossRef]
- Da Silva, S.S.; Fearnside, P.M.; de Alencastro Graça, P.M.L.; Brown, I.F.; Alencar, A.; de Melo, A.W.F. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. [Google Scholar] [CrossRef]
- Motazeh, A.G.; Ashtiani, E.F.; Baniasadi, R.; Choobar, F.M. Rating and mapping fire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. For. Ideas 2013, 19, 141–150. [Google Scholar]
- Prestes, N.C.C.S.; Massi, K.G.; Silva, E.A.; Nogueira, D.S.; de Oliveira, E.A.; Freitag, R.; Marimon, B.S.; Marimon-Junior, B.H.; Keller, M.; Feldpausch, T.R. Fire effects on understory forest regeneration in southern Amazonia. Front. For. Glob. Chang. 2020, 3, 10. [Google Scholar] [CrossRef]
- Filipponi, F. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2018, 2, 364. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Proto, A.M.; Aromando, A.; Cardettini, G.; Varela, V.; Danese, M. On the Mapping of Burned Areas and Burn Severity Using Self Organizing Map and Sentinel-2 Data. IEEE Geosci. Remote Sens. Lett. 2020, 17, 854–858. [Google Scholar] [CrossRef]
- Pereira, A.A.; Pereira, J.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Martínez-Álvarez, F.; Tien Bui, D. Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management. Remote Sens. 2020, 12, 301. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Canas, I.; Chuvieco, E. Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Giglio, L.; Loboda, T.; Roy, D.P.; Quayle, B.; Justice, C.O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens. Environ. 2009, 113, 408–420. [Google Scholar] [CrossRef]
- Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Smith, A.M. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, K.T.T.; Nguyen, V.C.; Le, H.D.; Revhaug, I. Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sens. 2016, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sens. Environ. 2020, 245, 111839. [Google Scholar] [CrossRef]
- Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GISci. Remote Sens. 2018, 55, 1–18. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; Technical Report RMRS-GTR-164-CD: LA 1-51; USDA Forest Service: Washington, DC, USA; Rocky Mountain Research Station: Ogden, UT, USA; USGS Publications Warehouse: Virgina, VA, USA, 2006.
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Cai, L.; Wang, M. Is the RdNBR a better estimator of wildfire burn severity than the dNBR? A discussion and case study in southeast China. Geocarto Int. 2022, 37, 758–772. [Google Scholar] [CrossRef]
- Gholinejad, S.; Khesali, E. An automatic procedure for generating burn severity maps from the satellite images-derived spectral indices. Int. J. Digit. Earth 2021, 14, 1659–1673. [Google Scholar] [CrossRef]
- McKenna, P.; Erskine, P.D.; Lechner, A.M.; Phinn, S. Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. Int. J. Remote Sens. 2017, 38, 4244–4264. [Google Scholar] [CrossRef]
- Hu, X.; Ban, Y.; Nascetti, A. Uni-Temporal Multispectral Imagery for Burned Area Mapping with Deep Learning. Remote Sens. 2021, 13, 1509. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Li, X.; Xie, Z.; Lo, S. Integration of Multiple Spectral Indices and a Neural Network for Burned Area Mapping Based on MODIS Data. Remote Sens. 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, E.A.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W. Assessment of forest disturbances by selective logging and forest fires in the Brazilian Amazon using Landsat data. Int. J. Remote Sens. 2013, 34, 1057–1086. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604. [Google Scholar]
- Coca, M.; Datcu, M. Anomaly Detection in Post Fire Assessment. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 8620–8623. [Google Scholar]
- Vivone, G.; Dalla Mura, M.; Garzelli, A.; Pacifici, F. A Benchmarking Protocol for Pansharpening: Dataset, Preprocessing, and Quality Assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6102–6118. [Google Scholar] [CrossRef]
- Luz, A.E.O.; Negri, R.G.; Massi, K.G.; Colnago, M.; Silva, E.A.; Casaca, W. Mapping Fire Susceptibility in the Brazilian Amazon Forests Using Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly Detection. Remote Sens. 2022, 14, 2429. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Tien Bui, D. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, M.M.; Pinty, B. Designing optimal spectral indexes for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1254–1265. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium; NASA Special Publication 351; NASA: Washington, DC, USA, 1974; Volume 1. [Google Scholar]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Relationship between soil burn severity in forest fires measured in situ and through spectral indices of remote detection. Forests 2019, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Kuai, L.; Meng, R.; Roberts, D.; Stavros, N. Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sens. Environ. 2018, 216, 105–121. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2013. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapmann and Hall: New York, NY, USA, 1989. [Google Scholar]
- Berk, R.A. Statistical Learning from a Regression Perspective, 2nd ed.; Springer Texts in Statistics; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Kochenderfer, M.; Wheeler, T. Algorithms for Optimization; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Besag, J. On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B (Methodol.) 1986, 48, 259–302. [Google Scholar] [CrossRef] [Green Version]
- Frery, A.C.; Correia, A.H.; Freitas, C.C. Classifying Multifrequency Fully Polarimetric Imagery with Multiple Sources of Statistical Evidence and Contextual Information. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3098–3109. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Van Rossum, G.; Drake, F.L. The Python Language Reference Manual; Network Theory Ltd.: Godalming, UK, 2011. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar]
- Westra, E. Python Geospatial Development; Packt Publishing: Birmingham, UK, 2010. [Google Scholar]
- Gómez-Chova, L.; Amorós-López, J.; Mateo-García, G.; Muñoz-Marí, J.; Camps-Valls, G. Cloud masking and removal in remote sensing image time series. J. Appl. Remote Sens. 2017, 11, 015005. [Google Scholar] [CrossRef]
- Basso, D.; Colnago, M.; Azevedo, S.; Silva, E.; Pina, P.; Casaca, W. Combining morphological filtering, anisotropic diffusion and block-based data replication for automatically detecting and recovering unscanned gaps in remote sensing images. Earth Sci. Inform. 2021, 14. [Google Scholar] [CrossRef]
- Exelis. IDL—Interactive Data Language; Version 8.8; Exelis Visual Information Solutions: Boulder, CO, USA, 2021. [Google Scholar]
- United Nations. United Nations—Normalized Burn Ratio (NBR); United Nations: New York, NY, USA, 2022. [Google Scholar]
- INPE. BDQueimadas: A Real-Time Burning Forest Database; Instituto Nacional de Pesquisas Espaciais: São José dos Campos, Brazil, 2022.
- Setzer, A.W.; Sismanoglu, R.A.; dos Santos, J.G.M. Método do Cálculo do Risco de Fogo do Programa do INPE—Versão 11.Junho/2019; Technical Report; National Institute for Space Research: São José dos Campos, Brazil, 2019. [Google Scholar]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Rijsbergen, C.J.V. Information Retrieval, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1979. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Negri, R.G.; Frery, A.C.; Casaca, W.; Azevedo, S.; Dias, M.A.; Silva, E.A.; Alcântara, E.H. Spectral–Spatial-Aware Unsupervised Change Detection With Stochastic Distances and Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2863–2876. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta—Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M.; Hall, J.V. Collection 6 MODIS Burned Area Product User’s Guide (Version 1.3); National Aeronautics and Space Administration: Washinton, DC, USA, 2020.
- Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef] [Green Version]
- Thuan, C.; Xulin, G.; Kazuo, T. Temporal dependence of burn severity assessment in Siberian larch (Larix sibirica) forest of northern Mongolia using remotely sensed data. Int. J. Wildland Fire 2016, 25, 685–698. [Google Scholar] [CrossRef]
- Casaca, W.; Gois, J.P.; Batagelo, H.C.; Taubin, G.; Nonato, L.G. Laplacian Coordinates: Theory and Methods for Seeded Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2665–2681. [Google Scholar] [CrossRef] [PubMed]
Severity | NBR () |
---|---|
Enhanced Regrowth, High | −500 to −251 |
Enhanced Regrowth, Low | −250 to −101 |
Unburned | −100 to 99 |
Low Severity | 100 to 269 |
Moderate–Low Severity | 270 to 439 |
Moderate–High Severity | 440 to 659 |
High Severity | 660 to 1300 |
August 2020 | September 2020 | October 2020 | Sensor | Spatial Resolution | ||
---|---|---|---|---|---|---|
Area I | Days | 13; 19 | 14 | 16 | OLI | 30 m |
Area II | 5; 10; 15; 25 | 4; 9; 14; 24 | 4; 9 | MSI | 10 m | |
Area III | 4; 12; 20; 28 | 5; 13; 21; 29 | 7; 15; 23 | MODIS | 500 m |
Area | Method | OA | F1-Score | MCC | Kappa | Run-Time (s) |
---|---|---|---|---|---|---|
MTDNBR | 0.710 | 0.499 | 0.364 | 0.326 | 0.00248 | |
1 | GKM | 0.862 | 0.635 | 0.550 | 0.551 | 1.27953 |
UFD+MRF | 0.885 | 0.655 | 0.598 | 0.588 | 180.44398 | |
MTDNBR | 0.666 | 0.369 | 0.312 | 0.229 | 0.00278 | |
2 | GKM | 0.924 | 0.532 | 0.561 | 0.500 | 0.67262 |
UFD+MRF | 0.953 | 0.741 | 0.745 | 0.721 | 66.09565 | |
MTDNBR | 0.454 | 0.493 | 0.255 | 0.143 | 0.00172 | |
3 | GKM | 0.861 | 0.746 | 0.650 | 0.651 | 0.16486 |
UFD+MRF | 0.874 | 0.750 | 0.671 | 0.667 | 10.47144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negri, R.G.; Luz, A.E.O.; Frery, A.C.; Casaca, W. Mapping Burned Areas with Multitemporal–Multispectral Data and Probabilistic Unsupervised Learning. Remote Sens. 2022, 14, 5413. https://doi.org/10.3390/rs14215413
Negri RG, Luz AEO, Frery AC, Casaca W. Mapping Burned Areas with Multitemporal–Multispectral Data and Probabilistic Unsupervised Learning. Remote Sensing. 2022; 14(21):5413. https://doi.org/10.3390/rs14215413
Chicago/Turabian StyleNegri, Rogério G., Andréa E. O. Luz, Alejandro C. Frery, and Wallace Casaca. 2022. "Mapping Burned Areas with Multitemporal–Multispectral Data and Probabilistic Unsupervised Learning" Remote Sensing 14, no. 21: 5413. https://doi.org/10.3390/rs14215413
APA StyleNegri, R. G., Luz, A. E. O., Frery, A. C., & Casaca, W. (2022). Mapping Burned Areas with Multitemporal–Multispectral Data and Probabilistic Unsupervised Learning. Remote Sensing, 14(21), 5413. https://doi.org/10.3390/rs14215413