JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance
<p>VIIRS horizontal sampling interval (HSI) for a VIIRS moderate band as a function of scan angle. The light blue and green lines show the unaggregated pixel growth along-scan for the scan and track directions, respectively. The dark blue line shows the pixel growth for the scan direction with the three aggregation zones.</p> "> Figure 2
<p>VIIRS scan section diagram illustrating the different collection regions and their angles during a single scan.</p> "> Figure 3
<p>Diagram of the VIIRS solar diffuser calibration. This includes the VIIRS scanner that looks at the Earth and solar diffuser (SD) when illuminated by the Sun through an attenuation screen and the solar diffuser stability monitor (SDSM) that views the Sun through a screen and the SD while it is illuminated.</p> "> Figure 4
<p>A cartoon of the VIIRS TVAC test chamber setup. The SV, TMCBB, and SIS100 sources are shown with respect to the instrument location within the chamber.</p> "> Figure 5
<p>A comparison of the on-orbit solar spectral irradiance profile and the SIS100 radiance profile. The OOB RSR contributions are not weighted the same in on-orbit and prelaunch applications.</p> "> Figure 6
<p>Band M4 dynamic range measurements for all detectors, legend in the upper right, for HAM side B. The points to the left of the first vertical line are high gain measurements. The band switches to low gain after a radiance of 40. The first and second vertical red lines are for high and low gain Lmax, respectively. The <span class="html-italic">y</span>-axis is offset subtracted VIIRS response, and the <span class="html-italic">x</span>-axis is the SIS100 radiance during the measurement.</p> "> Figure 7
<p>Band M8 dynamic range measurements for all detectors, legend in the upper right, for HAM side A. The <span class="html-italic">y</span>-axis is offset subtracted VIIRS response, and the <span class="html-italic">x</span>-axis is the SIS100 radiance during the measurement. The vertical red line corresponds to Lmax, and the saturation occurs before the line. The rollover in the response is due to saturation of the focal plane electronics. This causes two unique radiance levels to produce the same VIIRS digital number.</p> "> Figure 8
<p>Band I3 dynamic range measurements for all detectors, legend on the right, for HAM side B. The <span class="html-italic">y</span>-axis is offset subtracted VIIRS response, and the <span class="html-italic">x</span>-axis is the SIS100 radiance during the measurement. The vertical red line corresponds to Lmax, and the saturation occurs before the line. The rollover in the response is due to saturation of the focal plane electronics. This causes two unique radiance levels to produce the same VIIRS digital number. The blue crosses are from detector 4 that is an out of family with degraded performance that has continued on orbit.</p> "> Figure 9
<p>Band M6 dynamic range measurements for all detectors, legend in the upper right, for HAM side B. The <span class="html-italic">y</span>-axis is offset subtracted VIIRS response, and the <span class="html-italic">x</span>-axis is the SIS100 radiance during the measurement. The vertical red line corresponds to Lmax, and the saturation occurs before the line. The rollover in the response is due to saturation of the focal plane electronics. This causes two unique radiance levels to produce the same VIIRS digital number.</p> "> Figure 10
<p>Band M7 digital numbers (DNs) as a function of scan during prelaunch testing (upper image). The pattern shows the detector’s response to the SIS100 profile as it scans across it in auto gain mode. The wings on the left and right are high gain DNs (blue line), where the detector is partially viewing the SIS100 aperture. When the DNs reach the gain switch point value, the detector switches to low gain and the DNs drop in the middle of the image (orange line). The M7 radiance is shown in the middle image and is the upper image DNs’ converted radiance using the prelaunch calibration coefficients. The lower image is a zoom-in of the gain transition point to show that it is continuous in radiance.</p> "> Figure 11
<p>The signal-to-noise ratio (SNR) of band I3 for all detectors (colored symbols) as a function of SIS100 radiance (W/m<sup>2</sup>/µm/sr). The three vertical red lines are for Lmin (left), Ltyp (middle), and Lmax (right). The decrease in SNR at the Lmax line is due to partial saturation of the signal. This behavior is used help identify valid response data for characterization purposes.</p> "> Figure 12
<p>The signal-to-noise ratio (SNR) of band M10 for all detectors (colored symbols) as a function of SIS100 radiance (W/m<sup>2</sup>/µm/sr). The three vertical red lines are for Lmin (left), Ltyp (middle), and Lmax (right).</p> "> Figure 13
<p>Band M1 high gain fit coefficients for all detectors (<span class="html-italic">x</span>-axis) and TVAC/electronics configurations (colors and symbols). The columns are tau, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>. The rows are HAM A and B. Cold, nominal, and hot plateaus and electronics sides A and B are shown here.</p> "> Figure 14
<p>Band M1 low gain fit coefficients for all detectors (<span class="html-italic">x</span>-axis) and TVAC/electronics configurations (colors and symbols). The columns are tau, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>. The rows are HAM A and B. Cold, nominal, and hot plateaus and electronics sides A and B are shown here.</p> "> Figure 15
<p>Band M1 high gain fit coefficients for all detectors (<span class="html-italic">x</span>-axis) and TVAC/electronics configurations (colors and symbols) for HAM A. The columns are tau, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>. The rows are not fixed parameters, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math> fixed at zero, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math> fixed at zero, and the tau set to the detector average of each plateau. Cold, nominal, and hot plateaus and electronics sides A and B are shown here.</p> "> Figure 16
<p>Band M7 low gain fit residuals as a function of SIS100 radiance within the Lmin and Lmax regions for all detectors (colors and symbols).</p> "> Figure 17
<p>Band M8 fit residuals as a function of SIS100 radiance within the Lmin and Lmax regions for all detectors (colors and symbols) using a second-order polynomial fit.</p> "> Figure 18
<p>Band M8 fit residuals as a function of SIS100 radiance within the Lmin and Lmax regions for all detectors (colors and symbols) using a third-order polynomial fit.</p> "> Figure 19
<p>Band M8 fit coefficients for all detectors (<span class="html-italic">x</span>-axis) and TVAC/electronics configurations (colors and symbols) for HAM A. The columns are tau, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>. The rows are not fixed parameters, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math> fixed at zero, <math display="inline"><semantics> <mrow> <mfrac> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math> fixed at zero, and the tau set to the detector average of each plateau. Cold, nominal, and hot plateaus and electronics sides A and B are shown here.</p> "> Figure 20
<p>Band M1 temperature sensitivity (dL) as a function of electronics module (EM) temperature change between nominal and hot plateau for each detector (colors and symbols).</p> "> Figure 21
<p>Band M1 temperature sensitivity (dL) as a function of focal plane assembly (FPA) temperature change between nominal and hot plateau for each detector (colors and symbols).</p> "> Figure 22
<p>VIIRS top-level radiometric calibration uncertainty tree.</p> ">
Abstract
:1. Introduction
2. RSB Calibration Testing Approach
2.1. Spherical Integration Source and Linear Attenuation Assembly Calibrators
2.2. JPSS-1 VIIRS Configuration and Test Plan
2.3. Test Data and Analysis Methodology
3. Results
3.1. Dynamic Range
3.2. Dual Gain Switch
3.3. SNR Results
3.4. Detector Response Characterization
3.5. Response Sensitivity to Instrument Temperature
3.6. Uncertainty
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolfe, R.E.; Lin, G.; Nishihama, M.; Tewari, K.P.; Tilton, J.C.; Isaacman, A.R. Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 2013, 118, 11508–11521. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Kaufman, Y.J.; Kendall, J.D. NOAA-11 AVHRR visible and near-IR inflight calibration. Int. J. Remote Sens. 1990, 11, 1511–1519. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.; Xiong, J.; Kempler, S.; Masuoka, E. An overview of the Earth Observing System MODIS instrument and associated data systems performance. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1174–1176. [Google Scholar]
- Kramer, H.J. Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th ed.; Springer: Berlin, Germany, 2002; ISBN 3540423885. [Google Scholar]
- Xiong, X.; Aldoretta, E.; Angal, A.; Chang, T.; Geng, X.; Link, D.; Salomonson, V.; Twedt, K.; Wu, A. Terra MODIS: 20 years of on-orbit calibration and performance. J. Appl. Rem. Sens. 2020, 14, 037501. [Google Scholar] [CrossRef]
- Xiong, X.; Wenny, B.N.; Barnes, W.L. Overview of NASA Earth Observing Systems Terra and Aqua Moderate Resolution Imaging Spectroradiometer Instrument Calibration Algorithms and On-orbit Performance. J. Appl. Remote Sens. 2009, 3, 032501. [Google Scholar]
- Cao, C.; De Luccia, F.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.; Cao, C.; Blonski, S.; Wang, W.; Uprety, S.; Shao, X. NOAA-20 VIIRS Reflective Solar Band Postlaunch Calibration Updates Two Years In-Orbit. IEEE Trans. Geosci. Remote Sen. 2020, 58, 7633–7642. [Google Scholar] [CrossRef]
- Murgai, V.; Johnson, L.; Moskun, E. BRDF Characterization of Solar Diffuser for JPSS J1 using PASCAL. In Proceedings of the Earth Observing Systems XIX, San Diego, CA, USA, 18–20 August 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9218, pp. 346–355. [Google Scholar] [CrossRef]
- Fulbright, J.; Lei, N.; Efremova, B.; Xiong, X. Suomi-NPP VIIRS Solar Diffuser Stability Monitor Performance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 631–639. [Google Scholar] [CrossRef]
- Lei, N.; Chiang, K.; Xiong, X. Examination of the angular dependence of the SNPP VIIRS solar diffuser BRDF degradation factor. In Proceedings of the Earth Observing Systems XIX, San Diego, CA, USA, 18–20 August 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9218, pp. 550–562. [Google Scholar]
- Moyer, D.; McIntire, J.; Oudrari, H.; McCarthy, J.; Xiong, X.; De Luccia, F. JPSS-1 VIIRS Pre-Launch Response Versus Scan Angle Testing and Performance. Remote Sens. 2016, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Thuillier, G.; Hersé, M.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Shao, X.; Wang, W.; Uprety, S.; Choi, T.; Blonski, S.; Gu, Y.; Bai, Y.; Lin, L.; et al. Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies. Remote Sens. 2021, 13, 1075. [Google Scholar] [CrossRef]
- Oudrari, H.; McIntire, J.; Xiong, X.; Butler, J.; Lee, S.; Lei, N.; Schwarting, T.; Sun, J. Prelaunch Radiometric Characterization and Calibration of the S-NPP VIIRS Sensor. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2195–2210. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, C.; Uprety, S.; Shao, X. NOAA-20 VIIRS radiometric band saturation evaluation and comparison with Suomi NPP VIIRS using global probability distribution function method. In Proceedings of the Earth Observing Systems XXIII, San Diego, CA, USA, 19–23 August 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10764, pp. 505–512. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C.; Blonski, S.; Gu, Y.; Zhang, B.; Uprety, S. An Improved Method for VIIRS Radiance Limit Verification and Saturation Rollover Flagging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5403011. [Google Scholar] [CrossRef]
- Murgai, V.; Klein, S. Spectralon Solar Diffuser BRDF extrapolation to 2.25 microns for JPSS J1, J2, and J3. In Proceedings of the Earth Observing Systems XXIV, San Diego, CA, USA, 11–15 August 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11127, pp. 75–85. [Google Scholar] [CrossRef]
- Moyer, D.; Uprety, S.; Wang, W.; Cao, C.; Guch, I. S-NPP/NOAA-20 VIIRS reflective solar bands on-orbit calibration bias investigation. In Proceedings of the Earth Observing Systems XXVI, Virtual Conference, 3 August 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11829, pp. 319–321. [Google Scholar] [CrossRef]
Band | Spectral Range (µm) | Band Gain | Ltyp | Lmax | SNR |
---|---|---|---|---|---|
VNIR | |||||
DNB | 0.500–0.900 | VG | 0.00003 | 200 | 6 |
M1 | 0.402–0.422 | High | 44.9 | 135 | 352 |
Low | 155 | 615 | 316 | ||
M2 | 0.436–0.454 | High | 40 | 127 | 380 |
Low | 146 | 687 | 409 | ||
M3 | 0.478–0.498 | High | 32 | 107 | 416 |
Low | 123 | 702 | 414 | ||
M4 | 0.545–0.565 | High | 21 | 78 | 362 |
Low | 90 | 667 | 315 | ||
I1 | 0.600–0.680 | Single | 22 | 718 | 119 |
M5 | 0.662–0.682 | High | 10 | 59 | 242 |
Low | 68 | 651 | 360 | ||
M6 | 0.739–0.754 | Single | 9.6 | 41 | 199 |
I2 | 0.846–0.885 | Single | 25 | 349 | 150 |
M7 | 0.846–0.885 | High | 6.4 | 29 | 215 |
Low | 33.4 | 349 | 340 | ||
SWIR | |||||
M8 | 1.230–1.250 | Single | 5.4 | 165 | 74 |
M9 | 1.371–1.386 | Single | 6 | 77.1 | 83 |
I3 | 1.580–1.640 | Single | 7.3 | 72.5 | 6 |
M10 | 1.580–1.640 | Single | 7.3 | 71.2 | 342 |
M11 | 2.225–2.275 | Single | 0.12 | 31.8 | 10 |
Single Gain | High Gain | Low Gain | |||||||
---|---|---|---|---|---|---|---|---|---|
L_sat | L_max | L_sat/L_max | L_sat | L_max | L_sat/L_max | L_sat | L_max | L_sat/L_max | |
I1 | 772 | 718 | 1.08 | -- | -- | -- | -- | -- | -- |
I2 | 401 | 349 | 1.15 | -- | -- | -- | -- | -- | -- |
I3 | 65.2 | 72.5 | 0.90 | -- | -- | -- | -- | -- | -- |
M1 | -- | -- | -- | 164 | 135 | 1.21 | 710 | 615 | 1.15 |
M2 | -- | -- | -- | 173 | 127 | 1.36 | 797 | 687 | 1.16 |
M3 | -- | -- | -- | 144 | 107 | 1.35 | 851 | 702 | 1.21 |
M4 | -- | -- | -- | 113 | 78.0 | 1.44 | 863 | 667 | 1.29 |
M5 | -- | -- | -- | 76.5 | 59.0 | 1.30 | 733 | 651 | 1.13 |
M6 | 46.8 | 41.0 | 1.14 | -- | -- | -- | -- | -- | -- |
M7 | -- | -- | -- | 38.1 | 29.0 | 1.31 | 414 | 349 | 1.19 |
M8 | 115 | 165 | 0.69 | -- | -- | -- | -- | -- | -- |
M9 | 72.1 | 77.1 | 0.93 | -- | -- | -- | -- | -- | -- |
M10 | 77.0 | 71.2 | 1.08 | -- | -- | -- | -- | -- | -- |
M11 | 33.5 | 31.8 | 1.05 | -- | -- | -- | -- | -- | -- |
Band | E Side | HAM | Lmin Switch Point | Lmax Switch Point | L at Transition | Ratio of Switch with Requirement | ||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature Plateau | Temperature Plateau | |||||||||
Cold | Nominal | Hot | Cold | Nominal | Hot | |||||
M1 | A | A | 135 | 202.5 | 167.2 | 155.5 | 158.9 | 1.24 | 1.15 | 1.18 |
M1 | A | B | 135 | 202.5 | 169.3 | 158.0 | 161.3 | 1.25 | 1.17 | 1.19 |
M2 | A | A | 127 | 190.5 | 161.5 | 153.0 | 156.3 | 1.27 | 1.21 | 1.23 |
M2 | A | B | 127 | 190.5 | 162.6 | 154.0 | 157.4 | 1.28 | 1.21 | 1.24 |
M3 | A | A | 107 | 160.5 | 122.2 | 115.3 | 118.4 | 1.14 | 1.08 | 1.11 |
M3 | A | B | 107 | 160.5 | 122.5 | 115.5 | 118.6 | 1.14 | 1.08 | 1.11 |
M4 | A | A | 78 | 117 | 98.3 | 92.5 | 95.4 | 1.26 | 1.19 | 1.22 |
M4 | A | B | 78 | 117 | 98.2 | 92.4 | 95.3 | 1.26 | 1.18 | 1.22 |
M5 | A | A | 59 | 88.5 | 66.9 | 62.3 | 65.1 | 1.13 | 1.06 | 1.10 |
M5 | A | B | 59 | 88.5 | 66.6 | 62.0 | 64.8 | 1.13 | 1.05 | 1.10 |
M7 | A | A | 29 | 43.5 | 33.4 | 30.7 | 32.5 | 1.15 | 1.06 | 1.12 |
M7 | A | B | 29 | 43.5 | 33.5 | 30.8 | 32.6 | 1.16 | 1.06 | 1.12 |
M1 | B | A | 135 | 202.5 | 169.3 | 157.8 | 165.8 | 1.25 | 1.17 | 1.23 |
M1 | B | B | 135 | 202.5 | 170.0 | 160.2 | 168.6 | 1.26 | 1.19 | 1.25 |
M2 | B | A | 127 | 190.5 | 163.7 | 155.0 | 160.7 | 1.29 | 1.22 | 1.27 |
M2 | B | B | 127 | 190.5 | 164.6 | 156.1 | 161.7 | 1.30 | 1.23 | 1.27 |
M3 | B | A | 107 | 160.5 | 123.9 | 117.0 | 121.1 | 1.16 | 1.09 | 1.13 |
M3 | B | B | 107 | 160.5 | 124.1 | 117.1 | 121.3 | 1.16 | 1.09 | 1.13 |
M4 | B | A | 78 | 117 | 99.5 | 93.8 | 97.1 | 1.28 | 1.20 | 1.25 |
M4 | B | B | 78 | 117 | 99.2 | 93.6 | 97.1 | 1.27 | 1.20 | 1.25 |
M5 | B | A | 59 | 88.5 | 67.9 | 63.9 | 66.3 | 1.15 | 1.08 | 1.12 |
M5 | B | B | 59 | 88.5 | 67.5 | 63.7 | 66.0 | 1.14 | 1.08 | 1.12 |
M7 | B | A | 29 | 43.5 | 33.7 | 32.0 | 33.1 | 1.16 | 1.10 | 1.14 |
M7 | B | B | 29 | 43.5 | 33.6 | 32.0 | 33.1 | 1.16 | 1.10 | 1.14 |
Single Gain | High Gain | Low Gain | |||||||
---|---|---|---|---|---|---|---|---|---|
SNR | Spec | SNR/Spec | SNR | Spec | SNR/Spec | SNR | Spec | SNR/Spec | |
I1 | 307.1 | 119.0 | 2.6 | -- | -- | -- | -- | -- | -- |
I2 | 278.4 | 150.0 | 1.9 | -- | -- | -- | -- | -- | -- |
I3 | 186.8 | 6.0 | 31.1 | -- | -- | -- | -- | -- | -- |
M1 | -- | -- | -- | 628.9 | 352.0 | 1.8 | 878.1 | 155.0 | 5.7 |
M2 | -- | -- | -- | 567.6 | 380.0 | 1.5 | 1009.3 | 146.0 | 6.9 |
M3 | -- | -- | -- | 692.1 | 416.0 | 1.7 | 1155.7 | 123.0 | 9.4 |
M4 | -- | -- | -- | 542.4 | 362.0 | 1.5 | 961.9 | 90.0 | 10.7 |
M5 | -- | -- | -- | 376.5 | 242.0 | 1.6 | 928.3 | 68.0 | 13.7 |
M6 | 424.4 | 41.0 | 10.4 | -- | -- | -- | -- | -- | -- |
M7 | -- | -- | -- | 542.7 | 215.0 | 2.5 | 1148.2 | 33.4 | 34.4 |
M8 | 390.4 | 164.9 | 2.4 | -- | -- | -- | -- | -- | -- |
M9 | 302.8 | 77.1 | 3.9 | -- | -- | -- | -- | -- | -- |
M10 | 826.7 | 71.2 | 11.6 | -- | -- | -- | -- | -- | -- |
M11 | 69.7 | 31.8 | 2.2 | -- | -- | -- | -- | -- | -- |
SNR | Spec | SNR/Spec | |||||||
I3 D4 | 8.9 | 6.0 | 1.5 |
Cold-to-Nominal | Nominal-to-Hot | |||
---|---|---|---|---|
dL/dT EM | dL/dT OMM | dL/dT EM | dL/dT OMM | |
I1 | 0.0161 | 0.0762 | 0.0065 | 0.0291 |
I2 | −0.0014 | −0.0207 | −0.0057 | −0.0531 |
I3 | 0.0018 | −0.0052 | −0.0005 | −0.0155 |
M1 | −0.0007 | −0.0120 | −0.0002 | −0.0145 |
M2 | 0.0000 | −0.0074 | 0.0010 | −0.0111 |
M3 | −0.0006 | −0.0114 | 0.0007 | −0.0158 |
M4 | 0.0012 | −0.0159 | −0.0002 | −0.0197 |
M5 | −0.0008 | −0.0128 | −0.0010 | −0.0138 |
M6 | 0.0006 | −0.0041 | 0.0002 | −0.0075 |
M7 | −0.0011 | −0.0177 | −0.0012 | −0.0186 |
M8 | 0.0014 | −0.0221 | 0.0002 | −0.0263 |
M9 | 0.0046 | 0.0071 | −0.0181 | 0.0031 |
M10 | 0.0013 | −0.0063 | −0.0018 | −0.0182 |
M11 | 0.0015 | 0.0010 | 0.0000 | −0.0024 |
Description | Error Type | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | I1 | I2 | I3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | ||||||||||
Reflectance Accuracy (RSS of Bias & Random Totals) | 1.90 | 1.88 | 1.78 | 1.74 | 1.88 | 1.68 | 1.41 | 1.37 | 1.38 | 1.41 | 1.50 | 1.43 | 1.42 | 1.76 | 1.48 | 1.37 | 2.25 | 1.36 | 1.35 | 1.37 | |
Characterization Uncertainty at Ltyp | Random | 0.24 | 0.05 | 0.46 | 0.31 | 0.85 | 0.19 | 0.45 | 0.31 | 0.32 | 0.43 | 0.67 | 0.49 | 0.49 | 1.14 | 0.36 | 0.21 | 0.59 | 0.23 | 0.18 | 0.13 |
Response Stability | Random | 0.140 | 0.140 | 0.120 | 0.120 | 0.110 | 0.110 | 0.120 | 0.120 | 0.130 | 0.130 | 0.120 | 0.120 | 0.130 | 0.130 | 0.220 | 0.200 | 0.120 | 0.130 | 0.120 | 0.190 |
Offset Knowledge & Stability | Random | 0.040 | 0.010 | 0.040 | 0.010 | 0.030 | 0.012 | 0.040 | 0.014 | 0.040 | 0.040 | 0.090 | 0.040 | 0.010 | 0.040 | 0.030 | 0.020 | 0.070 | 0.070 | 0.045 | 0.060 |
Spec Unc Alloc | Random | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
RVS Unc Alloc | 0.71 | 0.71 | 0.25 | 0.25 | 0.06 | 0.06 | 0.07 | 0.07 | 0.1 | 0.1 | 0.06 | 0.06 | 0.06 | 0.13 | 0.49 | 0.1 | 0.09 | 0.09 | 0.06 | 0.08 | |
Pre-Launch Char Uncer | Random | 0.10 | 0.10 | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 | 0.08 | 0.08 | 0.04 | 0.05 | 0.05 | 0.12 | 0.48 | 0.07 | 0.08 | 0.07 | 0.05 | 0.04 |
Polarization Error | Random | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
RVS Change over Life | Random | 0.70 | 0.70 | 0.24 | 0.24 | 0.04 | 0.04 | 0.03 | 0.03 | 0.06 | 0.06 | 0.04 | 0.03 | 0.03 | 0.06 | 0.08 | 0.07 | 0.04 | 0.06 | 0.03 | 0.07 |
SD Uncertainty | 1.74 | 1.74 | 1.69 | 1.69 | 1.67 | 1.66 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 1.33 | 2.16 | 1.33 | 1.33 | 1.34 | |
Pre-Launch SD BRDF | Random | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 |
Straylight | Bias | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 |
M11 BRDF Extrapolation | Random | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.70 | 0.00 | 0.00 | 0.00 |
Other SD | 1.43 | 1.43 | 1.38 | 1.37 | 1.34 | 1.34 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.9 | 0.89 | 0.9 | 0.89 | 0.89 | 0.91 | |
SD Degradation over Life | Random | 0.12 | 0.07 | 0.13 | 0.07 | 0.10 | 0.04 | 0.10 | 0.04 | 0.10 | 0.04 | 0.04 | 0.09 | 0.03 | 0.09 | 0.13 | 0.09 | 0.16 | 0.08 | 0.10 | 0.20 |
SD - Sun Angle Uncertainty | Random | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |
Post-Launch BRF Change | Random | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
SAS Error | Random | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 |
SDSM Error | 0.79 | 0.79 | 0.68 | 0.68 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | |
Baseline SDSM Test | Random | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |
Spectral OOB | Bias | 0.50 | 0.50 | 0.30 | 0.30 | 0.07 | 0.07 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Lunar Cal Error | Random | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyer, D.; Angal, A.; Oudrari, H.; Haas, E.; Ji, Q.; De Luccia, F.; Xiong, X. JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance. Remote Sens. 2022, 14, 5113. https://doi.org/10.3390/rs14205113
Moyer D, Angal A, Oudrari H, Haas E, Ji Q, De Luccia F, Xiong X. JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance. Remote Sensing. 2022; 14(20):5113. https://doi.org/10.3390/rs14205113
Chicago/Turabian StyleMoyer, David, Amit Angal, Hassan Oudrari, Evan Haas, Qiang Ji, Frank De Luccia, and Xiaoxiong Xiong. 2022. "JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance" Remote Sensing 14, no. 20: 5113. https://doi.org/10.3390/rs14205113
APA StyleMoyer, D., Angal, A., Oudrari, H., Haas, E., Ji, Q., De Luccia, F., & Xiong, X. (2022). JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance. Remote Sensing, 14(20), 5113. https://doi.org/10.3390/rs14205113