Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia
<p>(<b>a</b>) Digital elevation model of Catalonia and XEMA stations network distribution. (<b>b</b>) Köppen climate classification in the study area. (<b>c</b>) Number of XEMA stations per IMERG pixel in the Catalonia domain.</p> "> Figure 2
<p>Schematic methodology applied in the data preparation, classification, and validation.</p> "> Figure 3
<p>Distribution of IMERG pixels and stations (red dots) classified according to (<b>a</b>) orography (<b>b</b>) Köppen climate classification used for validation. The numbers in brackets represent the number of stations under that classification.</p> "> Figure 4
<p>(<b>Top panel</b>) Mean annual precipitation accumulations of IMERG products and XEMA stations, in the period of 2015–2020. (<b>Bottom panel</b>) KDE curve associated with the distribution of each dataset, the black (red) dashed line represents the mean of the XEMA observations (IMERG).</p> "> Figure 5
<p>(<b>a</b>) Taylor diagram at sub-daily, daily, monthly, and annual scales of the products IMERG_E, IMERG_L and IMERG_F. (<b>b</b>) Same as the (<b>a</b>) figure but shows seasonal scales.</p> "> Figure 6
<p>Fraction of events detected as hits, false alarms, misses and correct negatives for the three IMERG products at different time scales. The thresholds selected for each time scale coincide with the mean of the observations at that scale: Half-hourly (1.4 mm), Daily (8.6 mm), Monthly (52.8 mm), Spring (185.8 mm), Summer (118.8 mm), Autumn (203.9 mm), Winter (126.7 mm) and Annual (623.5 mm).</p> "> Figure 7
<p><span class="html-italic">POD</span>, <span class="html-italic">FAR</span> and errors associated at different time scales and precipitation thresholds. The vertical dashed red line represents the mean of the observations at each time scale.</p> "> Figure 7 Cont.
<p><span class="html-italic">POD</span>, <span class="html-italic">FAR</span> and errors associated at different time scales and precipitation thresholds. The vertical dashed red line represents the mean of the observations at each time scale.</p> "> Figure 8
<p>Distribution of Bias, MAE, RMS and Rbias errors at each station point and according to the orography type where they are located: Ridgetop (triangle), Flat (square), Valley (circle).</p> "> Figure 9
<p>Stacked bars of the half-hourly relative error (<span class="html-italic">Rbias</span>) computed for each group of station for each climatic group. The colours represent the five categories of <span class="html-italic">Rbias</span> described in the legend.</p> "> Figure 10
<p>Violin plots of half-hourly rain gauge observations (XEMA) and IMERG products for the five rainfall intensity classes considered. Rainfall rate thresholds are given in mm/30 min.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. IMERG V06B Data
2.2.2. XEMA Data
2.3. Methodology
2.3.1. Overview
2.3.2. Categorical and Continuous Verification Scores
3. Results
3.1. Mean Annual Precipitation 2015–2020
3.2. Continuous Verification Scores for Different Time Scales
3.3. Categorical Verification Scores for Different Time Scales
3.4. Half-Hourly IMERG Products for Different Terrain and Climate Conditions
3.5. Intensity
4. Discussion
5. Conclusions
- IMERG generally captures the spatial–temporal pattern and variability of annual mean precipitation. However, discrepancies appear in the estimation of the magnitude. While IMERG_E and IMERG_L overestimate precipitation by 20% in practically the whole territory, IMERG_F reduces the error significantly, yielding only 2%. The calibration performance in this run may even cause an underestimation of precipitation in areas of complex orography such as the Pyrenees.
- The calculated statistics showed a significant improvement with decreasing temporal resolutions, with the monthly, seasonal and annual scales showing the best results in the estimation of precipitation accumulations. In contrast, the sub-daily scales showed high Bias values and very low correlation values, indicating the remaining challenge for satellite sensors to estimate precipitation at very high temporal resolutions. IMERG_F showed much better error statistics compared to IMERG_E and IMERG_L, wherein a generalised overestimation was evident and especially marked during the summer period.
- Similarly, the analysis of the POD and FAR showed a greater ability of IMERG to identify precipitation events at scales greater than daily, wherein a stable behaviour of the statistics is observed well above the mean values, although with deficiencies in the identification of extreme events at all scales. The proportion of false alarms is a problem for IMERG especially during the summer, which is mainly associated with the detection of false precipitation in the form of lightrainfall (which is likely influenced by evaporation processes not assimilated by the algorithm), as well as the underestimation of locally occurring heavy precipitation.
- The worst results were obtained on a semi-hourly scale represented by flat areas and under a BSk climate, wherein IMERG shows a tendency to overestimate rainfall.
- IMERG tends to overestimate light precipitation, while it tends to underestimate accumulated precipitation in the rest of the intensity thresholds studied, especially those marked by high intensity precipitation. Associated with these errors is the fundamental role of taking rainfall gauges on a point scale that may not represent the spatial and temporal variability of rainfall in a region where this variable is spatially uncorrelated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Temporal Resolution | Maximum Number of Records | Criterion 1 | Criterion 2 | ||
---|---|---|---|---|---|
Number of Records | Percentage (%) | Number of Records | Percentage (%) | ||
half-hourly | 19,482,432 | 18,804,667 | 97 | 277,616 | 1 |
daily | 405,884 | 391,446 | 96 | 70,399 | 17 |
monthly | 13,332 | 12,864 | 96 | 12,802 | 96 |
spring | 1111 | 996 | 90 | 996 | 90 |
summer | 1111 | 1020 | 92 | 1020 | 92 |
autumn | 1111 | 1032 | 93 | 1032 | 93 |
winter | 923 | 820 | 89 | 820 | 89 |
annual | 1111 | 1034 | 93 | 1034 | 93 |
Appendix B
Code | Description | Group |
---|---|---|
BSk | Cold semi-arid (steppe) climate | Arid |
Csa | Hot-summer Mediterranean climate | Temperate |
Cf | Temperate without dry season | Temperate |
Df | Continental without dry season | Cold (continental) |
References
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G. Long-Term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- AR5 Climate Change 2013: The Physical Science Basis—IPCC. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 14 July 2022).
- Kohler, T.; Giger, M.; Hurni, H.; Ott, C.; Wiesmann, U.; Wymann Von Dach, S.; Maselli, D. Mountains and Climate Change: A Global Concern. Mt. Res. Dev. 2010, 30, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.P.; Slater, A.G. Probabilistic Quantitative Precipitation Estimation in Complex Terrain. J. Hydrometeorol. 2006, 7, 3–22. [Google Scholar] [CrossRef]
- Bech, J.; Codina, B.; Lorente, J.; Bebbington, D. The Sensitivity of Single Polarization Weather Radar Beam Blockage Correction to Variability in the Vertical Refractivity Gradient. J. Atmos. Ocean. Technol. 2003, 20, 845–855. [Google Scholar] [CrossRef]
- Casellas, E.; Bech, J.; Veciana, R.; Pineda, N.; Rigo, T.; Miró, J.R.; Sairouni, A. Surface precipitation phase discrimination in complex terrain. J. Hydrol. 2021, 592, 125780. [Google Scholar] [CrossRef]
- Scofield, R.A.; Kuligowski, R. Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events. Weather Forecast. 2003, 18, 1037–1051. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. ATBD Version 2015, 4, 26. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Nascimento, J.G.; Althoff, D.; Bazame, H.C.; Neale, C.M.U.; Duarte, S.N.; Ruhoff, A.L.; Gonçalves, I.Z. Evaluating the Latest IMERG Products in a Subtropical Climate: The Case of Paraná State, Brazil. Remote Sens. 2021, 13, 906. [Google Scholar] [CrossRef]
- Moazami, S.; Najafi, M. A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol. 2021, 594, 125929. [Google Scholar] [CrossRef]
- Ramadhan, R.; Yusnaini, H.; Marzuki, M.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Harmadi, H.; Ningsih, A.P.; Battaglia, A.; et al. Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales. Remote Sens. 2022, 14, 1172. [Google Scholar] [CrossRef]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Comparison of GPM IMERG and TRMM 3B43 Products over Cyprus. Remote Sens. 2020, 12, 3212. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmos. Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Hanati, G.; Danierhan, S.; Liu, Q.; Xu, Z. Evaluation and Comparison of Daily GPM/TRMM Precipitation Products over the Tianshan Mountains in China. Water 2020, 12, 3088. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, B.; Xing, W.; Zhou, J.; Xu, F.; Xu, Y. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- Lei, H.; Li, H.; Zhao, H.; Ao, T.; Li, X. Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies. Atmos. Res. 2021, 259, 105661. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- Mayor, Y.G.; Tereshchenko, I.; Fonseca-Hernández, M.; Pantoja, D.A.; Montes, J.M. Evaluation of Error in IMERG Precipitation Estimates under Different Topographic Conditions and Temporal Scales over Mexico. Remote Sens. 2017, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Rojas, Y.; Minder, J.R.; Campbell, L.S.; Massmann, A.; Garreaud, R. Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile. Atmos. Res. 2021, 253, 105454. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Sharma, S.; Chen, Y.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas Against Rain Gauge Data. Remote Sens. 2020, 12, 1836. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ahmad, I.; Ding, Y.; Shangguan, D.; Zaman, M.; Ijaz, M.W.; Sarwar, K.; Han, H.; Yang, M. Assessment of IMERG-V06 Precipitation Product over Different Hydro-Climatic Regimes in the Tianshan Mountains, North-Western China. Remote Sens. 2019, 11, 2314. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Q.; Duan, Z.; Zhang, J.; Mo, K.; Li, Z.; Tang, G. Multiscale Comparative Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products from 2015 to 2017 over a Climate Transition Area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.; Tang, Q. Can IMERG Data Capture the Scaling of Precipitation Extremes With Temperature at Different Time Scales? Geophys. Res. Lett. 2022, 49, e2021GL096392. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.; Tan, J.; Petersen, W.A. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrol. Earth Syst. Sci. 2017, 21, 6559–6572. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, J.; Wang, J.; Qiao, X.; Zhang, J. Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation Products over High Mountainous Tributaries in Lhasa with Dense Rain Gauges. Remote Sens. 2019, 11, 2080. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, M.; Ma, M.; Tang, G.; Wang, T.; Zhao, X.; Ma, S.; Wu, J.; Wang, W. Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sens. 2022, 14, 928. [Google Scholar] [CrossRef]
- Kazamias, A.-P.; Sapountzis, M.; Lagouvardos, K. Evaluation of GPM-IMERG rainfall estimates at multiple temporal and spatial scales over Greece. Atmos. Res. 2022, 269, 106014. [Google Scholar] [CrossRef]
- Caracciolo, D.; Francipane, A.; Viola, F.; Noto, L.V.; Deidda, R. Performances of GPM satellite precipitation over the two major Mediterranean islands. Atmos. Res. 2018, 213, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Marcos, C.; Kummerow, C. The Contribution of Rain Gauges in the Calibration of the IMERG Product: Results from the First Validation over Spain. J. Hydrometeorol. 2020, 21, 161–182. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Tapiador, F.J. Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude. Atmos. Res. 2020, 244, 105068. [Google Scholar] [CrossRef]
- Tapiador, F.; Villalba-Pradas, A.; Navarro, A.; Martín, R.; Merino, A.; García-Ortega, E.; Sánchez, J.; Kim, K.; Lee, G. A Satellite View of an Intense Snowfall in Madrid (Spain): The Storm ‘Filomena’ in January 2021. Remote Sens. 2021, 13, 2702. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Rigo, T.; Pineda, N.; Forcadell, D. Uncertainty of precipitation estimates in convective events by the Meteorological Service of Catalonia radar network. Atmos. Res. 2009, 93, 408–418. [Google Scholar] [CrossRef]
- Martín-Vide, J.; Vallvé, M.B. The use of rogation ceremony records in climatic reconstruction: A case study from Catalonia (Spain). Clim. Change 1995, 30, 201–221. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Duffourg, F.; Esteban, P.; Lorente, J. Mesoscale numerical analysis of the historical November 1982 heavy precipitation event over Andorra (Eastern Pyrenees). Nat. Hazards Earth Syst. Sci. 2013, 13, 2969–2990. [Google Scholar] [CrossRef] [Green Version]
- Lana, X.; Serra, C.; Burgueño, A. Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index for Catalonia (NE Spain). Int. J. Clim. 2001, 21, 1669–1691. [Google Scholar] [CrossRef]
- Casellas, E.; Bech, J.; Veciana, R.; Miró, J.R.; Sairouni, A.; Pineda, N. A meteorological analysis interpolation scheme for high spatial-temporal resolution in complex terrain. Atmos. Res. 2020, 246, 105103. [Google Scholar] [CrossRef]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.C.; Puigcerver, M. Total Rainfall and Convective Rainfall in Catalonia, Spain. Int. J. Climatol. 1997, 17, 1683–1695. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). In Satellite Precipitation Measurement; Advances in Global Change Research; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 343–353. ISBN 978-3-030-24568-9. [Google Scholar]
- GES DISC. Available online: https://disc.gsfc.nasa.gov/ (accessed on 22 July 2022).
- Servei Meteorològic de Catalunya. Dades Obertes. Available online: https://www.meteo.cat/wpweb/serveis/cataleg-de-serveis/serveis-oberts/dades-obertes/ (accessed on 22 July 2022).
- Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Casas-Castillo, M.C.; Redaño, A. Quality control process of the daily rainfall series available in Catalonia from 1855 to the present. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 137, 2715–2729. [Google Scholar] [CrossRef]
- Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Casas-Castillo, M.C. Influence of regional and seasonal rainfall patterns on the ratio between fixed and unrestricted measured intervals of rainfall amounts. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2020, 140, 389–399. [Google Scholar] [CrossRef]
- WMO. Guide to Hydrological Practices: Data Aquisition and Processing, Analysis, Forecasting and Other Applications; WMO: Geneva, Switzerland, 1994. [Google Scholar]
- Connector QGIS Open ICGC. Institut Cartogràfic i Geològic de Catalunya. Available online: http://www.icgc.cat/es/Aplicaciones/Herramientas/Connector-QGIS-Open-ICGC (accessed on 30 September 2022).
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Jenness, J.; Brost, B.; Beier, P. Land Facet Corridor Designer. Rocky Mountain Research Station|RMRS—US Forest Service. 2013. Available online: http://corridordesign.org/dl/tools/CorridorDesigner_EvaluationTools.pdf (accessed on 10 April 2022).
- Majka, D.; Beier, P.; Jenness, J. CorridorDesigner ArcGIS Toolbox Tutorial. Environmental. Research, Development and. Education for the New Economy. (ERDENE) Initiative from. Northern Arizona University. 2007. Available online: http://corridordesign.org/downloads (accessed on 14 April 2022).
- Clima. Available online: http://atlasnacional.ign.es/wane/Clima (accessed on 22 July 2022).
- Resampling. Available online: https://docs.qgis.org/2.6/en/docs/user_manual/processing_algs/saga/grid_tools/resampling.html (accessed on 28 April 2022).
- AEMET-Agencia Estatal de Meteorología Intensidad de Precipitación. Available online: https://meteoglosario.aemet.es/es/termino/427_intensidad-de-precipitacion (accessed on 28 April 2022).
- Functions—Pingouin 0.5.2 Documentation. Available online: https://pingouin-stats.org/api.html (accessed on 22 July 2022).
- Romero, R.; Guijarro, J.A.; Ramis, C.; Alonso, S. A 30-Year (1964–1993) Daily Rainfall Data Base for the Spanish Mediterranean Regions: First Exploratory Study. Int. J. Climatol. 1998, 18, 541–560. [Google Scholar] [CrossRef]
- Gonzalez, S.; Bech, J. Extreme point rainfall temporal scaling: A long term (1805-2014) regional and seasonal analysis in Spain. Int. J. Clim. 2017, 37, 5068–5079. [Google Scholar] [CrossRef] [Green Version]
- Sumner, G.; Homar, V.; Ramis, C. Precipitation seasonality in eastern and southern coastal Spain. Int. J. Clim. 2001, 21, 219–247. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-119-96107-9. [Google Scholar]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Shawky, M.; Moussa, A.; Hassan, Q.K.; El-Sheimy, N. Performance Assessment of Sub-Daily and Daily Precipitation Estimates Derived from GPM and GSMaP Products over an Arid Environment. Remote Sens. 2019, 11, 2840. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Tian, Y.; Lambrigtsen, B.H.; Stephens, G.L. What Does CloudSat Reveal about Global Land Precipitation Detection by Other Spaceborne Sensors? Water Resour. Res. 2014, 50, 4893–4905. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Mazzoglio, P.; Laio, F.; Balbo, S.; Boccardo, P.; Disabato, F. Improving an Extreme Rainfall Detection System with GPM IMERG data. Remote Sens. 2019, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-temporal accuracy evaluation of three high-resolution satellite precipitation products in China area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Kummerow, C.; Tapiador, F.J. Assessment of IMERG Precipitation Estimates over Europe. Remote Sens. 2019, 11, 2470. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Validation of TRMM 3B42V7 Rainfall Product under Complex Topographic and Climatic Conditions over Hexi Region in the Northwest Arid Region of China. Water 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, Remote Sensing, Climatology and Modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Cui, W.; Dong, X.; Xi, B.; Feng, Z.; Fan, J. Can the GPM IMERG Final Product Accurately Represent MCSs’ Precipitation Characteristics over the Central and Eastern United States? J. Hydrometeorol. 2020, 21, 39–57. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Z.; Tang, G.; Ji, Q.; Min, X.; Wan, W.; Shi, Z. Quantitative Evaluations and Error Source Analysis of Fengyun-2-Based and GPM-Based Precipitation Products over Mainland China in Summer, 2018. Remote Sens. 2019, 11, 2992. [Google Scholar] [CrossRef]
- Gaona, M.F.R.; Overeem, A.; Leijnse, H.; Uijlenhoet, R. First-Year Evaluation of GPM Rainfall over the Netherlands: IMERG Day 1 Final Run (V03D). J. Hydrometeorol. 2016, 17, 2799–2814. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Dirección General del Instituto Geográfico Nacional. Atlas Nacional de España del siglo XXI; Centro Nacional de Información Geográfica (Ministerio de Fomento): Madrid, Spain, 2015.
Estimated Rainfall | Observed Rainfall | |
---|---|---|
Gauge Rain ≥ Threshold | Gauge Rain < Threshold | |
IMERG rain ≥ threshold | Hits (H) | False alarms (F) |
IMERG rain < threshold | Misses (M) | Correct Negatives |
Name | Formula | Perfect Score |
---|---|---|
Probability of detection (POD) | 1 | |
False alarm ratio (FAR) | 0 |
Name | Formula | Unit | Perfect Score |
---|---|---|---|
Spearman’s correlation coefficient | - | 1 | |
Mean error (Bias) | mm | 0 | |
Relative bias (Rbias) | % | 0 | |
Multiplicative bias (Mbias) | - | 1 | |
Mean absolute error (MAE) | mm | 0 | |
Root mean square error (RMSE) | mm | 0 |
N | Bias (mm) | Mbias | Rbias (%) | MAE (mm) | MAE (%) | RMSE (mm) | RMSE (%) | CC | |
---|---|---|---|---|---|---|---|---|---|
30 min | |||||||||
IMERG_F | 277616 | −0.07 | 0.95 | −4.85 | 1.19 | 87.36 | 2.37 | 173.30 | 0.33 |
IMERG_L | 277616 | 0.20 | 1.15 | 14.59 | 1.39 | 101.76 | 2.70 | 197.15 | 0.29 |
IMERG_E | 277616 | 0.26 | 1.19 | 18.86 | 1.49 | 109.18 | 2.89 | 211.11 | 0.23 |
Hourly | |||||||||
IMERG_F | 199255 | −0.05 | 0.98 | −2.16 | 1.88 | 87.27 | 3.51 | 162.81 | 0.37 |
IMERG_L | 199255 | 0.39 | 1.18 | 18.25 | 2.23 | 103.26 | 4.21 | 195.35 | 0.33 |
IMERG_E | 199255 | 0.42 | 1.20 | 19.60 | 2.35 | 109.01 | 4.46 | 206.85 | 0.26 |
Daily | |||||||||
IMERG_F | 70399 | −0.12 | 0.99 | −1.44 | 6.22 | 72.62 | 10.68 | 124.66 | 0.58 |
IMERG_L | 70399 | 1.71 | 1.20 | 19.94 | 7.93 | 92.56 | 14.68 | 171.42 | 0.53 |
IMERG_E | 70399 | 1.57 | 1.18 | 18.35 | 8.01 | 93.56 | 14.72 | 171.91 | 0.49 |
Monthly | |||||||||
IMERG_F | 12802 | 0.81 | 1.02 | 1.53 | 20.32 | 38.50 | 30.60 | 57.97 | 0.85 |
IMERG_L | 12802 | 11.75 | 1.22 | 22.27 | 33.17 | 62.84 | 51.13 | 96.87 | 0.67 |
IMERG_E | 12802 | 13.44 | 1.25 | 25.46 | 33.79 | 64.01 | 51.49 | 97.55 | 0.66 |
Spring | |||||||||
IMERG_F | 996 | −3.65 | 0.98 | −1.97 | 48.25 | 26.03 | 70.15 | 37.85 | 0.83 |
IMERG_L | 996 | 8.02 | 1.04 | 4.33 | 75.46 | 40.71 | 101.30 | 54.65 | 0.54 |
IMERG_E | 996 | 6.61 | 1.04 | 3.57 | 73.81 | 39.82 | 100.31 | 54.12 | 0.56 |
Summer | |||||||||
IMERG_F | 1020 | 11.39 | 1.10 | 9.64 | 43.41 | 36.74 | 59.73 | 50.55 | 0.85 |
IMERG_L | 1020 | 97.23 | 1.82 | 82.28 | 105.47 | 89.26 | 143.32 | 121.29 | 0.65 |
IMERG_E | 1020 | 97.84 | 1.83 | 82.80 | 106.46 | 90.10 | 142.63 | 120.70 | 0.62 |
Autumn | |||||||||
IMERG_F | 1032 | 2.34 | 1.01 | 1.15 | 52.09 | 25.55 | 70.80 | 34.73 | 0.80 |
IMERG_L | 1032 | 33.69 | 1.17 | 16.53 | 84.27 | 41.33 | 109.55 | 53.73 | 0.61 |
IMERG_E | 1032 | 46.89 | 1.23 | 23.00 | 89.53 | 43.91 | 114.42 | 56.12 | 0.61 |
Winter | |||||||||
IMERG_F | 820 | −2.42 | 0.98 | −1.91 | 37.79 | 29.83 | 60.58 | 47.82 | 0.91 |
IMERG_L | 820 | 7.77 | 1.06 | 6.14 | 56.20 | 44.36 | 93.27 | 73.62 | 0.83 |
IMERG_E | 820 | 14.11 | 1.11 | 11.14 | 54.51 | 43.03 | 88.75 | 70.06 | 0.84 |
Yearly | |||||||||
IMERG_F | 6204 | 9.65 | 1.02 | 1.55 | 139.36 | 22.35 | 194.17 | 31.14 | 0.86 |
IMERG_L | 6204 | 139.76 | 1.22 | 22.41 | 226.11 | 36.26 | 280.06 | 44.92 | 0.60 |
IMERG_E | 6204 | 159.22 | 1.26 | 25.54 | 230.12 | 36.91 | 285.82 | 45.84 | 0.63 |
N | BIAS (mm) | Mbias | Rbias (%) | MAE (mm) | RMSE (mm) | |
---|---|---|---|---|---|---|
light (0.1 ≤ Pr ˂ 1) | ||||||
IMERG_F | 177039 | 0.56 | 2.35 | 134.83 | 0.70 | 1.25 |
IMERG_L | 177039 | 0.76 | 2.81 | 181.30 | 0.90 | 1.81 |
IMERG_E | 177039 | 0.85 | 3.04 | 203.89 | 1.00 | 2.06 |
moderate (1 ≤ Pr ˂ 7.5) | ||||||
IMERG_F | 94589 | −0.62 | 0.74 | −25.68 | 1.55 | 2.15 |
IMERG_L | 94589 | −0.28 | 0.88 | −11.54 | 1.81 | 2.70 |
IMERG_E | 94589 | −0.27 | 0.89 | −11.31 | 1.91 | 2.89 |
heavy (7.5 ≤ Pr ˂ 15) | ||||||
IMERG_F | 4553 | −7.37 | 0.28 | −71.98 | 7.55 | 8.12 |
IMERG_L | 4553 | −6.36 | 0.38 | −62.12 | 7.07 | 7.79 |
IMERG_E | 4553 | −6.56 | 0.36 | −64.04 | 7.34 | 8.05 |
very heavy (15 ≤ Pr ˂ 30) | ||||||
IMERG_F | 1296 | −16.54 | 0.16 | −83.65 | 16.63 | 17.32 |
IMERG_L | 1296 | −14.89 | 0.25 | −75.32 | 15.18 | 16.16 |
IMERG_E | 1296 | −15.07 | 0.24 | −76.23 | 15.41 | 16.40 |
torrential (Pr ≥ 30) | ||||||
IMERG_F | 139 | −32.57 | 0.11 | −89.47 | 32.57 | 33.19 |
IMERG_L | 139 | −29.63 | 0.19 | −81.40 | 29.63 | 30.70 |
IMERG_E | 139 | −28.98 | 0.20 | −79.60 | 28.98 | 30.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinó, E.; Bech, J.; Udina, M. Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia. Remote Sens. 2022, 14, 5085. https://doi.org/10.3390/rs14205085
Peinó E, Bech J, Udina M. Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia. Remote Sensing. 2022; 14(20):5085. https://doi.org/10.3390/rs14205085
Chicago/Turabian StylePeinó, Eric, Joan Bech, and Mireia Udina. 2022. "Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia" Remote Sensing 14, no. 20: 5085. https://doi.org/10.3390/rs14205085
APA StylePeinó, E., Bech, J., & Udina, M. (2022). Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia. Remote Sensing, 14(20), 5085. https://doi.org/10.3390/rs14205085