Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter
"> Figure 1
<p>Diagram showing the image-processing workflows for FLIR field measurements (I–III) and laboratory measurements (IV). Processing workflows I–III before the 1-min average applies to individual images; se is standard error of the mean. Surface pixels in I and IV can be of the water or the target.</p> "> Figure 2
<p>Scatter plot of the DN of the water surface (uncorrected) as a function of <span class="html-italic">T</span><sub>w</sub> (°C), with circles indicating laboratory measurements in green <span class="html-italic">T</span><sub>air</sub>/<span class="html-italic">T</span><sub>w</sub> = 19.8 ± 0.2/6–35 °C, red 22 ± 2/4–35 °C, and blue 19.5 ± 0.5/−9–1 °C; black squares/triangles indicate the April/August field surveys, with open/filled symbols representing day/night. The dashed line indicates Equation (7).</p> "> Figure 3
<p>Scatter plot of the modeled <span class="html-italic">L</span><sub>b,w</sub>−<span class="html-italic">L</span><sub>b,path</sub> (Equations (1)–(3)) as a function of DN, using data from <a href="#remotesensing-14-03179-f002" class="html-fig">Figure 2</a>. The dashed line indicates Equation (9).</p> "> Figure 4
<p>Scatter plot of DN on the aluminum foil surface (field survey data, corrected with sigma = 30) as a function of <span class="html-italic">T</span><sub>alu</sub> (°C), with circles indicating laboratory measurements, in green <span class="html-italic">T</span><sub>air</sub> = 19.8 °C, red <span class="html-italic">T</span><sub>air</sub> = 22 °C, and blue <span class="html-italic">T</span><sub>air</sub> = 19.3 °C; black squares/triangles indicate April/August field surveys, with open/filled symbols representing day/night.</p> "> Figure 5
<p>(<b>a</b>) FLIR signal (kDN) for all imaged surfaces during all UAV surveys, except the aluminum foil reference (flatfield-corrected with sigma = 30), and (<b>b</b>) delta (DN) using uncorrected images. Legends indicate: 1₋PET S, 2₋PET L, 3₋EPS white, 4₋EPS blue, 5₋HDPE, 6₋bin bag, 7₋tarpaulin, and 9₋wood. Error bars were too small to show.</p> "> Figure 6
<p>Scatter plots of DN(alu) from images after flatfield correction with sigma = 30, as a function of (<b>a</b>) LCC, and (<b>b</b>) CBH; black squares/triangles indicate April/August field surveys with open/filled symbols representing day/night.</p> "> Figure 7
<p>Spectral reflectance from 7.5–13.5 μm of brown to dark brown sand, white gypsum dune sand, green rye grass, seafoam, seawater, ice (water), medium granular snow, and fine granular snow from the ECOSTRESS spectral library [<a href="#B38-remotesensing-14-03179" class="html-bibr">38</a>,<a href="#B39-remotesensing-14-03179" class="html-bibr">39</a>,<a href="#B40-remotesensing-14-03179" class="html-bibr">40</a>]. Mean <span class="html-italic">ε</span> is shown in the box.</p> "> Figure A1
<p>Images taken during the four surveys in (<b>a</b>) 1 April, RGB, (<b>b</b>) 1 April, NIR, (<b>c</b>) 3 August, RGB, (<b>d</b>) 3 August, NIR. Numbers indicate targets: 1₋small PET, 2₋large PET, 3₋EPS white, 4₋EPS blue, 5₋HDPE, 6₋binbag, 7₋tarpaulin, 8₋aluminum, 9₋wooden disk.</p> "> Figure A2
<p>Images taken during the four surveys with the FLIR camera, (<b>a</b>) 1 April, (<b>b</b>) 23 April (<b>c</b>) 3 August, (<b>d</b>) 4 August; the pseudo color scale indicates DN. Numbers as in <a href="#remotesensing-14-03179-f0A1" class="html-fig">Figure A1</a>.</p> "> Figure A3
<p>Images as in <a href="#remotesensing-14-03179-f0A2" class="html-fig">Figure A2</a> but seen after flatfield correction, using sigma = 30.</p> "> Figure A4
<p>Temperature measurements using iButton dataloggers (1-min moving window over 0.1 Hz data) while the targets were deployed at sea for (<b>a</b>) survey 1, (<b>b</b>) survey 2, (<b>c</b>), survey 3, and (<b>d</b>) survey 4. Dashed lines indicate the FLIR recording minute and the numbers’ targets: 1₋small PET, 2₋large PET, 3₋EPS white, 4₋EPS blue, 5₋HDPE, 6₋binbag, 7₋tarpaulin, 8₋aluminum.</p> "> Figure A5
<p>DN, 1 Hz data obtained during recording minute, after flatfield correction with sigma = 30, for (<b>a</b>) survey 1, (<b>b</b>) survey 2, (<b>c</b>), survey 3, and (<b>d</b>) survey 4. Numbers indicate targets: 1₋small PET, 2₋large PET, 3₋EPS white, 4₋EPS blue, 5₋HDPE, 6₋binbag, 7₋tarpaulin, 8₋aluminium, 9₋wooden disk.</p> "> Figure A6
<p>Delta, 1 Hz data, obtained during recording minute, using uncorrected images and DN(water) near each target, for (<b>a</b>) survey 1, (<b>b</b>) survey 2, (<b>c</b>), survey 3, and (<b>d</b>) survey 4; (derived from <a href="#remotesensing-14-03179-f0A5" class="html-fig">Figure A5</a>). Numbers indicate targets: 1₋small PET, 2₋large PET, 3₋EPS white, 4₋EPS blue, 5₋HDPE, 6₋binbag, 7₋tarpaulin, 8₋aluminum, 9₋wooden disk.</p> ">
Abstract
:1. Introduction
1.1. Current Research in the Remote Sensing of Floating Plastic Litter
1.2. TIR Remote Sensing
1.3. Thermal Radiance Transfer Model
2. Materials and Methods
2.1. FLIR Camera and Image Processing
- i.
- Flatfield, corrected for comparing the DN values of targets in UAV images;
- ii.
- Uncorrected for deriving delta in UAV images, with DN(water) taken close to DN(target);
- iii.
- Uncorrected for DN(water) in the UAV images, taken from the center of the images;
- iv.
- Uncorrected for FLIR images taken in the laboratory, with targets in the center of the view.
2.2. NIR and RGB Cameras
2.3. Temperature, Light Intensity, and Humidity
2.3.1. Measurements
2.3.2. Sensor Details
2.4. UAV Surveys
- PET bottles, clear (0.5 L);
- PET bottles, clear (2 L);
- EPS foam board, white (thickness 5 cm);
- EPS foam board, blue (thickness 3 cm);
- HDPE milk bottles, semi-transparent, white (2.3 L);
- LDPE/HDPE binbag, black, two thin layers;
- PE tarpaulin, white, single-layer;
- Aluminum foil (wrapped around 3);
- Wooden tree trunk disk (thickness 4 cm, radius 29 cm).
2.5. Atmospheric Parameters from ERA5
2.6. FLIR Measurements in the Laboratory
2.7. Biofouling Experiment
3. Results
3.1. Assessing the FLIR Camera Response
3.2. Response of the FLIR Camera to Background TIR Radiance
3.3. Temperatures
3.3.1. Environmental Temperatures
3.3.2. Surface Temperatures of Floating Plastic
3.4. FLIR Signals of Floating Plastic
3.5. Background TIR Radiance over the Open Ocean
3.6. Biofouling
4. Discussion
4.1. Measurements
4.2. Questions Answered
- (A)
- Little or no daylight. At night and in the early morning (surveys 1, 2, and 4) all targets looked cooler than water, reflecting the cold background radiance from the higher atmosphere. The cooler the background radiance, the more negative the DN difference and delta. As the presence of clouds increased the sky’s thermal radiance, we saw the largest |delta| under a clear sky. Increased cloud cover and low cloud cover height appeared to reduce |delta| more than warmer air from the surface to a 111-meter altitude. In this scenario, the TIR signal of floating plastic was dominated by the reflectance of cold background radiance, controlled by low cloud cover and cloud base height.
- (B)
- Daylight. During survey 3, at around noon, although the sky was overcast, sunlight warmed the targets and all logged kinetic surface temperatures were above water temperature, with some above air temperature. The latter did not include clear plastic bottles, but the targets were possibly not deployed for long enough to see a strong greenhouse effect. The black binbag looked warmest in the TIR image, relating to the enhanced absorption of light by dark colors. In the Aegean Sea survey, the clear PET bottles looked brighter than the binbags [7], this could be because the binbags were light blue and not a dark colour. White EPS looked the coolest (although the logged temperature was the highest) which would indicate low thermal emissivity. In scenario B, the TIR signal of most floating plastic was dominated by their raised surface temperatures.
- (1)
- Their surface temperature is different from Tw.
- (2)
- Their emissivity is different from εw, which is close to one.
- (3)
- We found Tw to be spatially homogeneous, providing a suitable background.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Snapshots
Appendix A.2. Temperatures
Appendix A.3. DN
Appendix A.4. Delta
References
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Echevarríaa, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, A.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.A.; Hardesty, B.D.; van Franeker, J.A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. A global inventory of small floating plastic debris. Environ. Res. Lett. 2015, 10, 124006. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.M.; Dufaur, J. Proof of concept for a model of light reflectance of plastics floating on natural waters. Mar. Pollut. Bull. 2018, 135, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.; Silva, H.; Silva, E. Remote Hyperspectral Imaging Acquisition and Characterization for Marine Litter Detection. Remote Sens. 2021, 13, 2536. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. 2019, 79, 175. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Arias Ballesteros, M. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Garaba, S.P.; Aitken, J.; Slat, B.; Dierssen, H.M.; Lebreton, L.; Zielinski, O.; Reisser, J. Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager. Environ. Sci. Technol. 2018, 52, 11699–11707. [Google Scholar] [CrossRef] [PubMed]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef] [Green Version]
- Kikaki, K.; Kakogeorgiou, I.; Mikeli, P.; Raitsos, D.E.; Karantzalos, K. MARIDA: A benchmark for Marine Debris detection from Sentinel-2 remote sensing data. PLoS ONE 2022, 17, e0262247. [Google Scholar] [CrossRef]
- Van Lieshout, C.; van Oeveren, K.; van Emmerik, T.; Postma, E. Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth Space Sci. 2020, 7, e2019EA000960. [Google Scholar] [CrossRef]
- De Vries, R.; Egger, M.; Mani, T.; Lebreton, L. Quantifying Floating Plastic Debris at Sea Using Vessel-Based Optical Data and Artificial Intelligence. Remote Sens. 2021, 13, 3401. [Google Scholar] [CrossRef]
- Kylili, K.; Kyriakides, I.; Artusi, A.; Hadjistassou, C. Identifying floating plastic marine debris using a deep learning approach. Environ. Sci. Pollut. Res. 2019, 26, 17091–17099. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Monleón-Getino, T.; López-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M. Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R. Environ. Pollut. 2021, 273, 116490. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Maximenko, N.; Corradi, P.; Law, K.L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Toward the integrated marine debris observing system. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; Aliani, S.; Lavender Law, K.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef] [Green Version]
- Goddijn-Murphy, L.; Williamson, B. On Thermal Infrared Remote Sensing of Plastic Pollution in Natural Waters. Remote Sens. 2018, 11, 2159. [Google Scholar] [CrossRef] [Green Version]
- Garaba, S.P.; Acuña-Ruz, T.; Mattar, C.B. Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells. Earth Syst. Sci. Data 2020, 12, 2665–2678. [Google Scholar] [CrossRef]
- Hecker, C.A.; Smith, T.E.L.; Beatriz Ribeiro da Luz, B.; Wooster, M.J. Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 43–67. [Google Scholar]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuña-Ruz, T.; Mattar, B.C. Thermal infrared spectral database of marine litter debris in Archipelago of Chiloé, Chile. PANGAEA 2020, Epub ahead of printing. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Theoretical background of thermal infrared remote sensing. In Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 1–26. [Google Scholar]
- Peckham, J.; O’Young, S.; Jacobs, J.T. Comparison of medium and long wave infrared imaging for ocean based sensing. J. Ocean Technol. 2015, 10, 112–128. [Google Scholar]
- Riedl, M.J. Optical Design Fundamentals for Infrared Systems, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
- Gardon, R. The emissivity of transparent materials. J. Am. Ceram. Soc. 1956, 39, 278–287. [Google Scholar] [CrossRef]
- Kelly, J.; Kljun, N.; Olsson, P.-O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2019, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- McArthur, L. World Climate Research Programme—Baseline Surface Radiation Network (BSRN)—Operations Manual; Version 2.1; Experimental Studies Division, Atmospheric Environment Service: Downsview, ON, Canada, 2005. [Google Scholar]
- Rusby, R. Introduction to Temperature Measurement. Good Practice Guide No. 125; Version 2.0; National Physical Laboratory: Teddington, UK, 2016; Available online: http://eprintspublications.npl.co.uk/id/eprint/6872 (accessed on 13 April 2022).
- ERA5 Hourly Data on Pressure Levels from 1979 to Present. Available online: https://doi.org/10.24381/cds.bd0915c6 (accessed on 13 April 2022).
- Pressure Altitude Calculator. Available online: https://www.weather.gov/epz/wxcalc_pressurealtitude (accessed on 13 April 2022).
- ERA5 Hourly Data on Single Levels from 1979 to Present. Available online: https://doi.org/10.24381/cds.adbb2d47 (accessed on 13 April 2022).
- Fazey, F.M.; Ryan, P.G. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. Environ. Pollut. 2016, 210, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Donlon, C.J.; Minnett, P.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, J. Towards improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Lavers, J.K.; Rivers-Auty, J.; Bond, A.L. Plastic debris increases circadian temperature extremes in beach sediments. J. Hazard. Mater. 2021, 416, 126140. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Potente, E.; Regnauld, H.; Rosato, S.; Mastronuzzi, G. Autumnal Beach Litter Identification by Mean of Using Ground-Based IR Thermography. Environments 2021, 8, 37. [Google Scholar] [CrossRef]
- ECOSTRESS Spectral Library. Version 1.0. Available online: https://speclib.jpl.nasa.gov/ (accessed on 13 April 2022).
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
Survey | Day (2021) | LT | Sky Condition | Sea State | |
---|---|---|---|---|---|
1 | 1 April | day | 07:40 | Cloudy | smooth |
2 | 23 April | night | 04:14 | Overcast (no stars) | slight |
3 | 3 August | day | 12:01 | Overcast (100% cloud cover) | calm (rippled) |
4 | 4 August | night | 01:41 | Clear sky (stars and red moon) | calm (smooth) |
Tair, 111 m | STRD | LCC | CBH | |
---|---|---|---|---|
Survey | (°C) | (106 J/m2) | (0–1) | km |
1 | 1.9 | 1.0395 | 0.81 | 0.9231 |
2 | 5.0 | 1.1465 | 0.79 | 0.5344 |
3 | 14.6 | 1.2696 | 0.82 | 0.9115 |
4 | 13.7 | 1.1582 | 0.30 | 1.5682 |
Tair (mean ± std) (°C) | Tw (°C) | p1 | p2 | R2 | RMSE (DN) |
---|---|---|---|---|---|
19.8 ± 0.2 | 6 to 35 | 24.9 ± 0.7 | 6852 ± 15 | 1.00 | 10 |
22 ± 1 | 4 to 35 | 22.9 ± 0.5 | 6922 ± 12 | 1.00 | 13 |
19.7 ± 0.3 | −9 to 1 | 31 ± 3 | 6820 ± 10 | 0.98 | 18 |
Handheld | Datalogger | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Survey | Tair,2m | Tw | Tsand | Wind | iButton Tair,2m | HOBO Tair,2m | iButton Tair,30m | iButton Tw | iButton RH% | HOBO I (lux) |
1 | 5.7 | 5.6 | 6.0 | 5 | 6.1 | 5.9 | 7.6 | 6.1 | 66.8 | 5511 |
2 | 7.4 | 7.3 | 6.8 | 1 | 6.6 | 6.4 | 7.1 | 7.6 | 87.6 | 0 |
3 | 17.0 | 13.2 | 17.7 | 3–16 | 19.0 | 19.2 | 17.9 | 14.1 | 66.0 | 14,467 |
4 | 13.5 | 12.7 | 13.9 | 2–6 | 11.6 | x | 12.6 | 13.6 | 98.8 | 0 |
Temperature (°C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Survey | Water | PET S | PET L | EPS White | EPS Blue | HDPE | Binbag | Tarp | Alu | Air, 2 m |
1 | 6.1 | 6.1 | 6.6 | 5.6 | 6 | 5.8 | 6.1 | 6.1 | 6.1 | 6.1 |
2 | 7.6 | 7.1 | 6.6 | 6.8 | 6.6 | 6.1 | 7.5 | 7.6 | 7.4 | 6.6 |
3 | 14.1 | 15.1 | 17.6 | 24.6 | 22.6 | 24.1 | 15.6 | 14.8 | 22.7 | 19.0 |
4 | 13.6 | 12.1 | 11.1 | 11.0 | 11.1 | 11.7 | 12.1 | 12.6 | 11.6 | 11.6 |
(a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
FLIR kDN | ||||||||||
S | Water | PET S | PET L | EPS White | EPS Blue | HDPE | Binbag | Tarpaulin | Alu | Wood |
1 | 6.805 | 6.785 | 6.784 | 6.729 | 6.754 | 6.79 | 6.799 | NaN | 6.56 | NaN |
2 | 6.862 | 6.83 | 6.827 | 6.772 | 6.783 | 6.837 | NaN | NaN | 6.641 | NaN |
3 | 6.979 | 7.004 | 6.995 | 6.956 | 7.089 | 6.978 | 7.261 | NaN | 6.745 | 7.045 |
4 | 6.795 | 6.751 | 6.747 | 6.697 | 6.687 | 6.753 | 6.768 | 6.691 | 5.647 | 6.769 |
(b) | ||||||||||
Delta (DN) | ||||||||||
S | PET S | PET L | EPS White | EPS Blue | HDPE | Binbag | Tarpaulin | Alu | Wood | |
1 | −21 | −20 | −71 | −48 | −14 | −9 | NaN | −255 | NaN | |
2 | −29 | −31 | −85 | −73 | −23 | NaN | NaN | −191 | NaN | |
3 | 23 | 14 | −21 | 102 | 14 | 265 | NaN | −373 | 85 | |
4 | −41 | −44 | −105 | −96 | −38 | −24 | −96 | −1073 | −26 | |
(c) | ||||||||||
Delta (DN) | ||||||||||
S | PET S | PET L | EPS White | EPS Blue | HDPE | Binbag | Tarpaulin | Alu | Wood | |
1 | −25 | −23 | −92 | −56 | −16 | −12 | NaN | −262 | NaN | |
2 | −34 | −37 | −95 | −82 | −26 | NaN | NaN | −219 | NaN | |
3 | 30 | 22 | −24 | 114 | 18 | 294 | NaN | −245 | 90 | |
4 | −51 | −55 | −133 | −114 | −46 | −36 | −110 | −1214 | −31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goddijn-Murphy, L.; Williamson, B.J.; McIlvenny, J.; Corradi, P. Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter. Remote Sens. 2022, 14, 3179. https://doi.org/10.3390/rs14133179
Goddijn-Murphy L, Williamson BJ, McIlvenny J, Corradi P. Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter. Remote Sensing. 2022; 14(13):3179. https://doi.org/10.3390/rs14133179
Chicago/Turabian StyleGoddijn-Murphy, Lonneke, Benjamin J. Williamson, Jason McIlvenny, and Paolo Corradi. 2022. "Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter" Remote Sensing 14, no. 13: 3179. https://doi.org/10.3390/rs14133179
APA StyleGoddijn-Murphy, L., Williamson, B. J., McIlvenny, J., & Corradi, P. (2022). Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter. Remote Sensing, 14(13), 3179. https://doi.org/10.3390/rs14133179