Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
<p>Flow diagram for selection of articles for the survey based on ROSES protocol.</p> "> Figure 2
<p>(<b>a</b>) The number of article/s published per year on machine learning based landslide susceptibility mapping. (<b>b</b>) The number of machine learning model names detected in article titles. (<b>c</b>) Top six journals on machine learning based landslide susceptibility mapping. (<b>d</b>) Top five countries as case study location.</p> "> Figure 3
<p>Slope degree for the state of Meghalaya, India.</p> "> Figure 4
<p>Slope aspect for the state of Meghalaya, India.</p> "> Figure 5
<p>Plan curvature for the state of Meghalaya, India.</p> "> Figure 6
<p>Lithology/Geology for the state of Meghalaya, India.</p> "> Figure 7
<p>Distance from river for the state of Meghalaya, India.</p> "> Figure 8
<p>Topographic wetness index for the state of Meghalaya, India.</p> "> Figure 9
<p>Land use/Land cover for the state of Meghalaya, India.</p> "> Figure 10
<p>Landslide data points for the state of Meghalaya, India.</p> ">
Abstract
:1. Introduction
2. Survey Methodology
3. Current Trend
4. Elements of Landslide Susceptibility Mapping Using Machine Learning
4.1. Landslide Causative Factors
- Topography: Slope, aspect, elevation, plan curvature, profile curvature, and sediment transport index;
- Hydrology: Rainfall, solar radiation, stream power index, topographic wetness index (TWI), distance to rivers, and density of the river;
- Geological: Lithology, distance to faults, and density of fault;
- Land use/cover: LULC and normalized difference vegetation index (NDVI);
- Man-made: Distance to roads and density.
4.2. Datasets and Landslide Inventory
4.3. Evaluation Methods
4.3.1. Area under the Receiver Operating Characteristic Curve
4.3.2. Accuracy
4.3.3. Cohen’s Kappa Coefficient
4.3.4. Root Mean Square Error
4.4. Machine Learning
5. Machine Learning in Landslide Susceptibility Mapping
5.1. Conventional Machine Learning Method
5.1.1. Random Forest
5.1.2. Support Vector Machine
- The separating hyper-plane: The idea of SVM is to determine a line or hyper-plane in higher-dimensional space that can separate the input data into classes;
- Maximum-margin hyper-plane: We can have many hyper-planes for separating different classes. Training the SVM aims to determine the hyper-plane with maximum margin where the margin represents the distance from the hyper-pane to the nearby data points (also known as support vectors). The hyper-plane with maximum margin from the data points is the best class-separator selected for the classification;
- The soft margin: If the data points are linearly separable, the maximum-margin hyperplane can separate the classes, but data in real-life applications might not be linearly separable. Soft-margin tolerates few miss-classification or anomalies, allowing the model to generalize better in the case of linearly inseparable data;
- The kernel function: Kernel in SVM is a mathematical function that accepts the input data and transforms the data into the desired form. Generally, the data are transformed to a higher dimension space, where non-linear data becomes separable.
5.1.3. Logistic Regression
5.1.4. Artificial Neural Network
5.1.5. Naive Bayes
- Efficient computation: Training and classification time are linear to the number of features. While the number of training examples does not affect classification, training time is linear to the number of training examples;
- Less variance: NB does not utilize search and hence has less variance. However, this may also result in high bias;
- Cumulative learning: NB works on the learning of lower-order probabilities using the available training data, and the probability can be updated once new training data are acquired;
- Posterior probabilities can be directly predicted using NB;
- Robustness: All the features are used for its prediction. Hence it is not affected by noise.;
- Handling missing values: Missing features do not affect NB because it always uses all its features for all its predictions, so the missing attribute effect is not noticeable.
5.2. Hybrid Techniques
5.2.1. Literature on Hybrid Techniques
5.2.2. Discussion on Hybrid Techniques
5.3. Ensemble Techniques
5.3.1. Literature on Ensemble Techniques
5.3.2. Discussion on Ensemble Techniques
5.4. Deep Learning Methods
5.4.1. Literature on Deep Learning Methods
5.4.2. Discussion on Deep Learning Methods
6. Discussion
7. Conclusions and Future Scope of Work
- There is no standard guideline for selecting LCFs, and their importance differs from one study location to another. Researchers can collect all the available LCFs for the study location, use a suitable feature selection method to determine the important LCFs, and use only the highly co-related LCFs in landslide susceptibility mapping;
- A large number of high-resolution datasets are required to train the ML models. If sufficient landslide data are not available, researchers can use oversampling techniques to increase the size of the dataset. Landslide and an equal amount of non-landslide data are also required for training and validation. Systematic approaches such as clustering techniques can be used to select the non-landslide locations;
- Combination of different ML models in a hybrid or ensemble setup can overcome the limitations of standalone ML models and achieve higher accuracy;
- For evaluating the performance of the landslide susceptibility models, AUC can be used, as the AUC value represents the summary of overall performance [79].
- The Transformer DL model is a sequence-to-sequence model and state-of-the-art in machine translation. It uses self-attention mechanism to decide which part of the input sequence is important in translating to the output sequence. The RNN and LSTM were also designed for sequence-to-sequence translation tasks and have achieved high accuracy in landslide susceptibility mapping;
- Transfer learning (TL) is a popular ML method. It reuses the previously trained model on a new problem, and the idea is to use the knowledge learned for one task to solve similar ones. The advantages of TL include less training time and high prediction accuracy with a small dataset. The ML models trained on a study location with a rich dataset can be applied in other study locations with a small dataset using transfer learning.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.K.; Schuster, R.L. Landslides: Investigation and Mitigation; Special Report 247; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Fleuchaus, P.; Blum, P.; Wilde, M.; Terhorst, B.; Butscher, C. Retrospective evaluation of landslide susceptibility maps and review of validation practice. Environ. Earth Sci. 2021, 80, 485. [Google Scholar] [CrossRef]
- Pardeshi, S.D.; Autade, S.E.; Pardeshi, S.S. Landslide hazard assessment: Recent trends and techniques. SpringerPlus 2013, 2, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huabin, W.; Gangjun, L.; Weiya, X.; Gonghui, W. GIS-based landslide hazard assessment: An overview. Prog. Phys. Geogr. 2005, 29, 548–567. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Pourghasemi, H.R.; Lee, S.; Yamani, M. GIS-based gully erosion susceptibility mapping: A comparison among three data-driven models and AHP knowledge-based technique. Environ. Earth Sci. 2018, 77, 628. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Naemitabar, M.; Zanganeh Asadi, M. Landslide zonation and assessment of Farizi watershed in northeastern Iran using data mining techniques. Nat. Hazards 2021, 108, 2423–2453. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Q.; Wang, H.; Liu, F.; Wang, H.; Han, L. Bagging-based machine learning algorithms for landslide susceptibility modeling. Nat. Hazards 2021, 110, 823–846. [Google Scholar] [CrossRef]
- Clarivate. Web of Science: Discover Multidisciplinary Content. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 2 March 2022).
- Saha, S.; Saha, A.; Hembram, T.K.; Pradhan, B.; Alamri, A.M. Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Appl. Sci. 2020, 10, 3772. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I.; Dholakia, M. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A.S. ROSES RepOrting standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. 2018, 7, 7. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Yilmaz, I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ. Earth Sci. 2010, 61, 821–836. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.; Dai, F. Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Koukis, G.; Ziourkas, C. Slope instability phenomena in Greece: A statistical analysis. Bull. Int. Assoc. Eng. Geol.-Bull. L’Assoc. Int. Géol. L’Ing. 1991, 43, 47–60. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: Cham, Switzerland, 2019; pp. 283–301. [Google Scholar]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Lee, S.; Min, K. Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng. Geol. 2004, 75, 229–250. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ. Geol. 2002, 41, 720–730. [Google Scholar]
- Survey, P.U.G. Geologic Map of South Asia (geo8ag). Available online: https://catalog.data.gov/dataset/geologic-map-of-south-asia-geo8ag (accessed on 2 March 2022).
- Gökceoglu, C.; Aksoy, H. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng. Geol. 1996, 44, 147–161. [Google Scholar] [CrossRef]
- Kirkby, M.; Beven, K. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar]
- Moore, I.D.; Grayson, R.; Ladson, A. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Kadavi, P.R.; Lee, C.W.; Lee, S. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Shirzadi, A.; Soliamani, K.; Habibnejhad, M.; Kavian, A.; Chapi, K.; Shahabi, H.; Chen, W.; Khosravi, K.; Thai Pham, B.; Pradhan, B.; et al. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 2018, 18, 3777. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Niu, R.; Hu, Y. A combination of geographically weighted regression, particle swarm optimization and support vector machine for landslide susceptibility mapping: A case study at Wanzhou in the Three Gorges Area, China. Int. J. Environ. Res. Public Health 2016, 13, 487. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Niu, R.; Huang, B.; Wu, X.; Zhao, Y.; Ye, R. Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology 2014, 204, 287–301. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Singh, S.K.; Al-Ansari, N.; Clague, J.J.; Jaafari, A.; Chen, W.; Miraki, S.; Dou, J.; et al. Shallow landslide susceptibility mapping: A comparison between logistic model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector machine algorithms. Int. J. Environ. Res. Public Health 2020, 17, 2749. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Lokesh, R.; Pradhan, B.; Alamri, A. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land 2021, 10, 989. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, D.; Wen, H.; Zhang, H.; Zhang, F. Comparison of random forest model and frequency ratio model for landslide susceptibility mapping (LSM) in Yunyang County (Chongqing, China). Int. J. Environ. Res. Public Health 2020, 17, 4206. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Hembram, T.K.; Pradhan, B.; Dikshit, A.; Abdul Maulud, K.N.; Alamri, A.M. Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping. Water 2021, 13, 2664. [Google Scholar] [CrossRef]
- Li, R.; Wang, N. Landslide susceptibility mapping for the Muchuan county (China): A comparison between bivariate statistical models (woe, ebf, and ioe) and their ensembles with logistic regression. Symmetry 2019, 11, 762. [Google Scholar] [CrossRef] [Green Version]
- Kutlug Sahin, E.; Colkesen, I. Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto Int. 2021, 36, 1253–1275. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Pham, B.T.; Vu, V.D.; Costache, R.; Phong, T.V.; Ngo, T.Q.; Tran, T.H.; Nguyen, H.D.; Amiri, M.; Tan, M.T.; Trinh, P.T.; et al. Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto Int. 2021, 1–26. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Meng, Q.; Miao, F.; Zhen, J.; Wang, X.; Wang, A.; Peng, Y.; Fan, Q. GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: A case study from Wolong Giant Panda Natural Reserve, China. Bull. Eng. Geol. Environ. 2016, 75, 923–944. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Hu, X.; Mei, H.; Zhang, H.; Li, Y.; Li, M. Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China. Nat. Hazards 2021, 105, 1663–1689. [Google Scholar] [CrossRef]
- Wang, G.; Lei, X.; Chen, W.; Shahabi, H.; Shirzadi, A. Hybrid computational intelligence methods for landslide susceptibility mapping. Symmetry 2020, 12, 325. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Hu, M.; Zhang, Y.; Tang, H.; Liu, D.; Song, Q. GIS-based landslide susceptibility mapping using ensemble methods for Fengjie County in the Three Gorges Reservoir Region, China. Int. J. Environ. Sci. Technol. 2021, 1–18. [Google Scholar] [CrossRef]
- Song, J.; Wang, Y.; Fang, Z.; Peng, L.; Hong, H. Potential of ensemble learning to improve tree-based classifiers for landslide susceptibility mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4642–4662. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Duan, G.; Peng, L. Landslide susceptibility mapping using rotation forest ensemble technique with different decision trees in the Three Gorges Reservoir area, China. Remote Sens. 2021, 13, 238. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.; Xu, C.; Wei, L.; Zeng, X. Comparative Study of Convolutional Neural Network and Conventional Machine Learning Methods for Landslide Susceptibility Mapping. Remote Sens. 2022, 14, 321. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, Z.; Xu, Q.; Li, W. Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens. 2021, 13, 1157. [Google Scholar] [CrossRef]
- Ngo, P.T.T.; Panahi, M.; Khosravi, K.; Ghorbanzadeh, O.; Kariminejad, N.; Cerda, A.; Lee, S. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci. Front. 2021, 12, 505–519. [Google Scholar]
- GSI. Bhukosh | Gateway to All Geoscientific Information of GSI. Available online: https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx (accessed on 2 March 2022).
- Soldati, M.; Corsini, A.; Pasuto, A. Landslides and climate change in the Italian Dolomites since the Late glacial. Catena 2004, 55, 141–161. [Google Scholar] [CrossRef]
- Wood, J.; Harrison, S.; Reinhardt, L. Landslide inventories for climate impacts research in the European Alps. Geomorphology 2015, 228, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Brardinoni, F.; Slaymaker, O.; Hassan, M.A. Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology 2003, 54, 179–196. [Google Scholar] [CrossRef]
- Fisher, G.B.; Amos, C.B.; Bookhagen, B.; Burbank, D.W.; Godard, V.; Whitmeyer, S. Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes. Geol. Soc. Am. Spec. Pap. 2012, 492, 1–22. [Google Scholar]
- Sato, H.; Harp, E. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Guerriero, L.; Di Martire, D.; Calcaterra, D.; Francioni, M. Digital Image Correlation of Google Earth Images for Earth’s Surface Displacement Estimation. Remote Sens. 2020, 12, 3518. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, C.; Duan, Z.; Liu, H.; Liu, X.; Ullah Jan Khan, K. A hybrid model consisting of supervised and unsupervised learning for landslide susceptibility mapping. Remote Sens. 2021, 13, 1464. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.; Khan, K.U.J. Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping. Stoch. Environ. Res. Risk Assess. 2021, 35, 1243–1256. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.; Xu, S.; He, Y.; Li, Z.; Yu, X.; Liang, Y.; Wu, W.; Wang, Y. Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China. Comput. Geosci. 2022, 158, 104966. [Google Scholar] [CrossRef]
- Rong, G.; Alu, S.; Li, K.; Su, Y.; Zhang, J.; Zhang, Y.; Li, T. Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models—A Case Study of Shuicheng County, China. Water 2020, 12, 3066. [Google Scholar] [CrossRef]
- Yilmaz, I. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ. Earth Sci. 2010, 60, 505–519. [Google Scholar] [CrossRef]
- Sahin, E.K.; Colkesen, I.; Kavzoglu, T. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 2020, 35, 341–363. [Google Scholar] [CrossRef]
- Karakas, G.; Kocaman, S.; Gokceoglu, C. Comprehensive performance assessment of landslide susceptibility mapping with MLP and random forest: A case study after Elazig earthquake (24 Jan 2020, Mw 6.8), Turkey. Environ. Earth Sci. 2022, 81, 1–22. [Google Scholar] [CrossRef]
- Narkhede, S. Understanding auc-roc curve. Towards Data Sci. 2018, 26, 220–227. [Google Scholar]
- Xie, W.; Li, X.; Jian, W.; Yang, Y.; Liu, H.; Robledo, L.F.; Nie, W. A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin county, China. ISPRS Int. J. Geo-Inf. 2021, 10, 93. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.T.T.; Bui, D.T. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 2009, 13, 959. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Akinci, H.; Zeybek, M. Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey. Nat. Hazards 2021, 108, 1515–1543. [Google Scholar] [CrossRef]
- Ali, M.Z.; Chu, H.J.; Chen, Y.C.; Ullah, S. Machine learning in earthquake-and typhoon-triggered landslide susceptibility mapping and critical factor identification. Environ. Earth Sci. 2021, 80, 233. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Chen, W.; Ly, H.B.; Ho, L.S.; Omidvar, E.; Tran, V.P.; Bui, D.T. A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping. Sustainability 2019, 11, 6323. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.C.; Lee, S.; Jung, H.S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Proceedings of the Information Computing and Applications, Chengde, China, 14–16 September 2012; Liu, B., Ma, M., Chang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar]
- Liu, L.L.; Yang, C.; Wang, X.M. Landslide susceptibility assessment using feature selection-based machine learning models. Geomech. Eng. 2021, 25, 1–16. [Google Scholar]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Pham, Q.B.; Achour, Y.; Ali, S.A.; Parvin, F.; Vojtek, M.; Vojteková, J.; Al-Ansari, N.; Achu, A.L.; Costache, R.; Khedher, K.M.; et al. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat. Nat. Hazards Risk 2021, 12, 1741–1777. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.Y.; Xu, C. Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models. Front. Earth Sci. 2021, 9, 589630. [Google Scholar] [CrossRef]
- Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine learning feature selection methods for landslide susceptibility mapping. Math. Geosci. 2014, 46, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Belousov, A.; Verzakov, S.; Von Frese, J. Applicational aspects of support vector machines. J. Chemom. J. Chemom. Soc. 2002, 16, 482–489. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Chen, W.; Chai, H.; Zhao, Z.; Wang, Q.; Hong, H. Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environ. Earth Sci. 2016, 75, 474. [Google Scholar] [CrossRef]
- Marjanovic, M.; Bajat, B.; Kovacevic, M. Landslide Susceptibility Assessment with Machine Learning Algorithms. In Proceedings of the 2009 International Conference on Intelligent Networking and Collaborative Systems, Barcelona, Spain, 4–6 November 2009; pp. 273–278. [Google Scholar] [CrossRef]
- Oh, H.J.; Kadavi, P.R.; Lee, C.W.; Lee, S. Evaluation of landslide susceptibility mapping by evidential belief function, logistic regression and support vector machine models. Geomat. Nat. Hazards Risk 2018, 9, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Subasi, A. Chapter 3—Machine learning techniques. In Practical Machine Learning for Data Analysis Using Python; Subasi, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 91–202. [Google Scholar] [CrossRef]
- Belyadi, H.; Haghighat, A. Chapter 5—Supervised learning. In Machine Learning Guide for Oil and Gas Using Python; Belyadi, H., Haghighat, A., Eds.; Gulf Professional Publishing: Oxford, UK, 2021; pp. 169–295. [Google Scholar] [CrossRef]
- Bartosik, A.; Whittingham, H. Chapter 7—Evaluating safety and toxicity. In The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry; Ashenden, S.K., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 119–137. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W. Landslide Susceptibility Evaluation Using Hybrid Integration of Evidential Belief Function and Machine Learning Techniques. Water 2020, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C. Artificial Neural Network. In Interdisciplinary Computing in Java Programming; Springer: Boston, MA, USA, 2003; pp. 81–100. [Google Scholar]
- Choi, J.; Oh, H.J.; Won, J.S.; Lee, S. Validation of an artificial neural network model for landslide susceptibility mapping. Environ. Earth Sci. 2010, 60, 473–483. [Google Scholar] [CrossRef]
- Lucchese, L.V.; de Oliveira, G.G.; Pedrollo, O.C. Mamdani fuzzy inference systems and artificial neural networks for landslide susceptibility mapping. Nat. Hazards 2021, 106, 2381–2405. [Google Scholar] [CrossRef]
- Yilmaz, I. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull. Eng. Geol. Environ. 2009, 68, 297–306. [Google Scholar] [CrossRef]
- Quan, H.C.; Lee, B.G. GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE J. Civ. Eng. 2012, 16, 1258–1266. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Xing, M.; Wu, Y.; Pei, Y.; Yang, D.; Bai, H. Landslide susceptibility mapping at Gongliu county, China using artificial neural network and weight of evidence models. Geosci. J. 2016, 20, 705–718. [Google Scholar] [CrossRef]
- Can, A.; Dagdelenler, G.; Ercanoglu, M.; Sonmez, H. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: Comparison of training algorithms. Bull. Eng. Geol. Environ. 2019, 78, 89–102. [Google Scholar] [CrossRef]
- Harmouzi, H.; Nefeslioglu, H.A.; Rouai, M.; Sezer, E.A.; Dekayir, A.; Gokceoglu, C. Landslide susceptibility mapping of the Mediterranean coastal zone of Morocco between Oued Laou and El Jebha using artificial neural networks (ANN). Arab. J. Geosci. 2019, 12, 696. [Google Scholar] [CrossRef]
- Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714. [Google Scholar]
- Lee, S.; Lee, M.J.; Jung, H.S.; Lee, S. Landslide susceptibility mapping using naïve bayes and bayesian network models in Umyeonsan, Korea. Geocarto Int. 2020, 35, 1665–1679. [Google Scholar] [CrossRef]
- Imtiaz, I.; Umar, M.; Latif, M.; Ahmed, R.; Azam, M. Landslide susceptibility mapping: Improvements in variable weights estimation through machine learning algorithms—A case study of upper Indus River Basin, Pakistan. Environ. Earth Sci. 2022, 81, 1–14. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X.; Shahabi, H.; Shirzadi, A.; Khosravi, K.; Chai, H.; Zhang, S.; Zhang, L.; Ma, J.; Chen, Y.; et al. Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto Int. 2019, 34, 1177–1201. [Google Scholar] [CrossRef]
- Zhang, T.y.; Han, L.; Zhang, H.; Zhao, Y.h.; Li, X.a.; Zhao, L. GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine. J. Mt. Sci. 2019, 16, 1275–1288. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.; Rahman, R.M. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena 2020, 188, 104425. [Google Scholar] [CrossRef]
- Sahana, M.; Pham, B.T.; Shukla, M.; Costache, R.; Thu, D.X.; Chakrabortty, R.; Satyam, N.; Nguyen, H.D.; Phong, T.V.; Le, H.V.; et al. Rainfall induced landslide susceptibility mapping using novel hybrid soft computing methods based on multi-layer perceptron neural network classifier. Geocarto Int. 2020, 1–25. [Google Scholar] [CrossRef]
- Alqadhi, S.; Mallick, J.; Talukdar, S.; Bindajam, A.A.; Saha, T.K.; Ahmed, M.; Khan, R.A. Combining Logistic Regression-based hybrid optimized machine learning algorithms with sensitivity analysis to achieve robust landslide susceptibility mapping. Geocarto Int. 2021, 1–25. [Google Scholar] [CrossRef]
- Arabameri, A.; Chandra Pal, S.; Rezaie, F.; Chakrabortty, R.; Saha, A.; Blaschke, T.; Di Napoli, M.; Ghorbanzadeh, O.; Thi Ngo, P.T. Decision tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 2021, 1–35. [Google Scholar] [CrossRef]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Xing, Y.; Yue, J.; Guo, Z.; Chen, Y.; Hu, J.; Travé, A. Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang mountains of China. Front. Earth Sci. 2021, 9, 622. [Google Scholar] [CrossRef]
- Hu, H.; Wang, C.; Liang, Z.; Gao, R.; Li, B. Exploring Complementary Models Consisting of Machine Learning Algorithms for Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inf. 2021, 10, 639. [Google Scholar] [CrossRef]
- Sun, D.; Shi, S.; Wen, H.; Xu, J.; Zhou, X.; Wu, J. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping. Geomorphology 2021, 379, 107623. [Google Scholar] [CrossRef]
- Dung, N.V.; Hieu, N.; Phong, T.V.; Amiri, M.; Costache, R.; Al-Ansari, N.; Prakash, I.; Le, H.V.; Nguyen, H.B.T.; Pham, B.T. Exploring novel hybrid soft computing models for landslide susceptibility mapping in Son La hydropower reservoir basin. Geomat. Nat. Hazards Risk 2021, 12, 1688–1714. [Google Scholar] [CrossRef]
- Wei, R.; Ye, C.; Sui, T.; Ge, Y.; Li, Y.; Li, J. Combining spatial response features and machine learning classifiers for landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102681. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shirzadi, A.; Shahabi, H.; Chen, W.; Clague, J.J.; Geertsema, M.; Jaafari, A.; Avand, M.; Miraki, S.; Talebpour Asl, D.; et al. Shallow landslide susceptibility mapping by random forest base classifier and its ensembles in a semi-arid region of Iran. Forests 2020, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide susceptibility mapping: Machine and ensemble learning based on remote sensing big data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- Pham, B.T.; Van Phong, T.; Nguyen-Thoi, T.; Trinh, P.T.; Tran, Q.C.; Ho, L.S.; Singh, S.K.; Duyen, T.T.T.; Nguyen, L.T.; Le, H.Q.; et al. GIS-based ensemble soft computing models for landslide susceptibility mapping. Adv. Space Res. 2020, 66, 1303–1320. [Google Scholar] [CrossRef]
- Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1619–1630. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, C.; Mei, H.; Zhang, H. Landslide susceptibility mapping using an ensemble model of Bagging scheme and random subspace–based naïve Bayes tree in Zigui County of the Three Gorges Reservoir Area, China. Bull. Eng. Geol. Environ. 2021, 80, 5315–5329. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen-Thoi, T.; Qi, C.; Van Phong, T.; Dou, J.; Ho, L.S.; Van Le, H.; Prakash, I. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena 2020, 195, 104805. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Nhu, V.H.; Mohammadi, A.; Shahabi, H.; Ahmad, B.B.; Al-Ansari, N.; Shirzadi, A.; Clague, J.J.; Jaafari, A.; Chen, W.; Nguyen, H. Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. Int. J. Environ. Res. Public Health 2020, 17, 4933. [Google Scholar] [CrossRef] [PubMed]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.J.; Lee, J.H. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 2014, 11, 1063–1078. [Google Scholar] [CrossRef]
- Duan, T.; Anand, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.; Schuler, A. Ngboost: Natural gradient boosting for probabilistic prediction. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 2690–2700. [Google Scholar]
- Zhou, X.; Wen, H.; Li, Z.; Zhang, H.; Zhang, W. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto Int. 2022, 1–27. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Han, L.; Chen, L.; Wang, L. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. J. Rock Mech. Geotech. Eng. 2022, in press. [Google Scholar] [CrossRef]
- Webb, G.I. Multiboosting: A technique for combining boosting and wagging. Mach. Learn. 2000, 40, 159–196. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E.; Singer, Y. Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 1999, 37, 297–336. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Prakash, I. Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto Int. 2019, 34, 316–333. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Ho, T.C.; Pradhan, B.; Pham, B.T.; Nhu, V.H.; Revhaug, I. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ. Earth Sci. 2016, 75, 1101. [Google Scholar] [CrossRef]
- Ting, K.M.; Witten, I.H. Stacking Bagged and Dagged Models; University of Waikato: Hamilton, New Zealand, 1997. [Google Scholar]
- Melville, P.; Mooney, R.J. Creating diversity in ensembles using artificial data. Inf. Fusion 2005, 6, 99–111. [Google Scholar] [CrossRef]
- Li, W.; Fang, Z.; Wang, Y. Stacking ensemble of deep learning methods for landslide susceptibility mapping in the Three Gorges Reservoir area, China. Stoch. Environ. Res. Risk Assess. 2021, 1–22. [Google Scholar] [CrossRef]
- Töscher, A.; Jahrer, M.; Bell, R.M. The bigchaos solution to the netflix grand prize. Netflix Prize. Doc. 2009, 1–52. [Google Scholar]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 2019, 11, 2866. [Google Scholar] [CrossRef] [Green Version]
- Kavzoglu, T.; Teke, A.; Yilmaz, E.O. Shared blocks-based ensemble deep learning for shallow landslide susceptibility mapping. Remote Sens. 2021, 13, 4776. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Habumugisha, J.M.; Chen, N.; Rahman, M.; Islam, M.M.; Ahmad, H.; Elbeltagi, A.; Sharma, G.; Liza, S.N.; Dewan, A. Landslide susceptibility mapping with deep learning algorithms. Sustainability 2022, 14, 1734. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Nhu, V.H.; Hoang, N.D.; Nguyen, H.; Ngo, P.T.T.; Bui, T.T.; Hoa, P.V.; Samui, P.; Bui, D.T. Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area. Catena 2020, 188, 104458. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef]
Year | Author | Objective | Summary | Limitation |
---|---|---|---|---|
2018 | Yu Huang et al. [8] | To review SVM for landslide susceptibility mapping and compare it with four other ML techniques. | The basic theory of SVM is presented, followed by a discussion on the methodology involved in landslide susceptibility mapping using SVM. The SVM and other four techniques (AHP, LGR, ANN, and RF) are theoretically compared. | The work does not include the latest development on SVM. Only the basic theory of SVM is discussed. Many articles on landslide susceptibility mapping using SVM are not included. This review is limited to SVM and four other ML techniques. |
2020 | Merghadi et al. [7] | To present the popular ML techniques available for landslide susceptibility mapping. | Presented the basic architecture of popular ML techniques and highlighted the advantages and disadvantages of each model. Analyzed the performance of the ML techniques by considering a case study location in Algeria. | This study does not include many recently developed hybrid, ensemble, and deep learning techniques. |
2021 | Naemitabar et al. [9] | To do a comparative study of popular ML methods used for generating LSM. | The study’s main focus was on the prioritization of effective LCFs to get better performance accuracy. Four ML models were reviewed: SVM, BRT, LMT, and RF. | The study discussed only four ML models. |
2021 | Zhang et al. [10] | To carry out a comparative study of four traditional ML models integrated with bagging strategy to improve the performance. | Four conventional ML models: BFTree, FT, SVM, and CART as a base model, were integrated with bagging-based ensemble method to improve the performance of the base models. The result shows that the bagging-based ensemble method outperformed the traditional ML models. Significant improvement was observed for CART. | The study was limited to bagging-based ensemble models of four conventional ML models. |
Author | No. of Citation | Article Title |
---|---|---|
Pradhan et al. [17] | 650 | A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS |
Yilmaz et al. [18] | 504 | Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey) |
Yilmaz et al. [19] | 346 | Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine |
Youssef et al. [20] | 340 | Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia |
Yao et al. [21] | 327 | Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China |
Zare et al.[22] | 222 | Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms |
Park et al. [23] | 217 | Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea |
Pourghasemi et al. [24] | 188 | Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran |
Kalantar et al. [25] | 182 | Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between SVM, LGR and ANN |
Huang et al. [8] | 154 | Review on landslide susceptibility mapping using support vector machines |
Author | Year | Hybrid Method |
---|---|---|
Peng et al. [41] | 2014 | Novel hybrid method combining rough set theory and SVM |
Yu et al. [40] | 2016 | SVM with geographical weighted regression and PSO |
Pham et al. [86] | 2019 | Novel hybrid method using sequential minimal optimization and SVM |
Zhang et al. [117] | 2019 | Fractal dimension with index of entropy and SVM |
Adnan et al. [118] | 2020 | LSM generated by combining the LSM produced by four ML models KNN, MLP, RF, and SVM |
Wang et al. [119] | 2020 | GeoSOM with RF and ensemble ML model consisting of ANN-SVM-GBDT |
Fang et al. [13] | 2020 | Proposed three hybrid models CNN-SVM, CNN-RF, and CNN-LGR |
Hu et al. [48] | 2020 | Combining fractal theory with SVM and NB |
Rong et al. [74] | 2020 | Combination of Bayesian optimization with RF and GBDT |
Wang et al. [55] | 2020 | Integration of MultiBoost with RBFN and CDT |
Sahana et al. [120] | 2020 | Multi-layer perceptron neural network classifier with ensemble ML models like Bagging, Dagging, and DECORATE |
Xie et al. [79] | 2021 | GeoDetector using factor detectors and interaction detectors with four ML models ANN, BN, LGR, and SVM |
Alqadhi et al. [121] | 2021 | Four optimized ML model namely PSO-ANN, PSO-RF, PSO-M5P, and PSO-SVM with LGR |
Arabameri et al. [122] | 2021 | Credal decision tree based hybrid models namely CDT-bagging, CDT-MultiBoost, and CDT-SubSpace |
Saha et al. [123] | 2021 | Hybrid ensemble method using RF as a base classifier and ensemble methods, namely RotFor-RF, RSS-RF, and bagging-RF |
Xing et al. [124] | 2021 | The output of ML models namely back propagation, RF, and SVM are combined using weight factors |
Hu et al. [125] | 2021 | Fuzzy c-means clustering and factor analysis with LGR |
Zhou et al. [51] | 2021 | RF with GeoDetector and recursive feature elimination |
Sun et al. [126] | 2021 | GeoDetector and RF |
Lui et al. [61] | 2021 | GeoDetector with RF |
Liang et al. [71] | 2021 | Combination of unsupervised and supervised ML method |
Dung et al. [127] | 2021 | Novel hybrid method consisting bagging-based rough set and AdaBoost-based rough set |
Wei et al. [128] | 2022 | Spatial response feature with ML classifiers |
Author | Year | Ensemble Method |
---|---|---|
Althuwaynee et al. [138] | 2014 | CHAID and LGR |
Kadavi et al. [38] | 2018 | AdaBoost, LogitBoost, Multiclass classifier, and bagging models |
Shirzadi et al. [39] | 2018 | ADTree based on the MultiBoost, bagging, RotFor, and RSS ensemble algorithm |
Pham et al. [145] | 2019 | LogitBoost ensemble |
Arabameri et al. [146] | 2019 | Ensemble of landslide numerical risk factor bivariate model with linear multivariate regression and BRT |
Roy et al. [154] | 2019 | Weight-of-evidence and SVM |
Li et al. [46] | 2019 | Ensemble of weight-of-evidence, evidence belief function, and IoE with LGR |
Hu et al. [49] | 2020 | Stacking ensemble of SVM, ANN, NB, and LGR |
Di et al. [153] | 2020 | Ensemble of ANN, generalized boosting model and maximum entropy ML algorithms |
Nhu et al [137] | 2020 | Ensemble model of AdaBoost and alternative decision tree |
Nhu et al. [130] | 2020 | Ensemble of RF with three meta-classifiers bagging, RSS, and RotFor |
Sahin et al. [76] | 2020 | Canonical correlation forest, RF and RotFor |
Pham et al. [135] | 2020 | RBFN ensemble with RSS, attribute selected classifier, cascade generalization, and dagging |
Pham et al. [132] | 2020 | Bagging, dagging, DECORATE, and RotFor |
Kalantar et al. [131] | 2020 | Ensemble of Flexible discriminant analysis, Generalized logistic models, Boosted regression trees, and RF |
Song et al. [57] | 2020 | Stacking ensemble learning method framework to combine CART, RF, extremely randomized tree, GBDT, and XGBoost |
Pham et al. [50] | 2021 | Bagging, Cascade generalization, dagging, DECORATE, MultiBoost, MultiScheme, Real AdaBoost, RotFor, RSS |
Saha et al. [123] | 2021 | Bagging-RF, RotFor-RF and RSS-RF |
Kavzoglu et al. [155] | 2021 | Ensemble of CNN, RNN, and LSTM |
Li et al. [151] | 2021 | Stacking ensemble of CNN and RNN |
Fang et al. [58] | 2021 | Stacking, blending, simple averaging, and weighted averaging |
Gong et al. [56] | 2021 | Qualitative matrix, semi-quantitative partition, and quantitative probability-weighted |
Liang et al. [72] | 2021 | Classification and regression tree, GBDT, AdaBoost-decision tree and RF |
Hu et al. [134] | 2021 | Bagging and RSS-based naive Bayes tree |
Kutlug et al. [47] | 2021 | Canonical correlation forest and RotFor |
Hu et al. [54] | 2021 | Bagging, boosting, and stacking |
Fang et al. [59] | 2021 | Integrating decision trees (DTs) with the RotFor ensemble technique |
Zhang et al. [73] | 2022 | LightGBM and RF |
Kavzoglu et al. [129] | 2022 | Natural gradient boosting compared with RF and XGBoost |
Zhou et al. [140] | 2022 | XGBoost |
Zhang et al. [141] | 2022 | RF and XGBoost |
Author | Year | Deep Learning Method |
---|---|---|
Wang et al. [158] | 2019 | CNN |
Nhu et al. [159] | 2020 | DNN |
Ngo et al. [62] | 2021 | RNN and CNN |
Kavzoglu et al. [155] | 2021 | CNN, RNN, and LSTM |
Azarafza et al. [160] | 2021 | Deep convolutional neural network (CNN-DNN) |
Li et al. [151] | 2021 | CNN and RNN |
Liu et al. [60] | 2022 | CNN |
Wei et al. [128] | 2022 | DL framework SR-ML |
Habumugisha et al. [157] | 2022 | CNN, DNN, LSTM, and RNN |
ML Techniques | 0.70–0.80 | 0.80–0.90 | >0.90 |
---|---|---|---|
Conventional | 12 | 31 | 20 |
Hybrid | 1 | 15 | 14 |
Ensemble | 4 | 40 | 22 |
Deep Learning | - | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ado, M.; Amitab, K.; Maji, A.K.; Jasińska, E.; Gono, R.; Leonowicz, Z.; Jasiński, M. Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sens. 2022, 14, 3029. https://doi.org/10.3390/rs14133029
Ado M, Amitab K, Maji AK, Jasińska E, Gono R, Leonowicz Z, Jasiński M. Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing. 2022; 14(13):3029. https://doi.org/10.3390/rs14133029
Chicago/Turabian StyleAdo, Moziihrii, Khwairakpam Amitab, Arnab Kumar Maji, Elżbieta Jasińska, Radomir Gono, Zbigniew Leonowicz, and Michał Jasiński. 2022. "Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey" Remote Sensing 14, no. 13: 3029. https://doi.org/10.3390/rs14133029
APA StyleAdo, M., Amitab, K., Maji, A. K., Jasińska, E., Gono, R., Leonowicz, Z., & Jasiński, M. (2022). Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing, 14(13), 3029. https://doi.org/10.3390/rs14133029