Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion
<p>(<b>a</b>) The distribution of CPUE values of the fisheries’ datasets. (<b>b</b>) The distribution of CPUE values of the fisheries’ datasets after deletion of outliers.</p> "> Figure 2
<p>Example of data expansion in fisheries’ datasets.</p> "> Figure 3
<p>Distribution of Chlα and SST data for a month in the study area.</p> "> Figure 4
<p>(<b>a</b>) A region of visible-light band image. (<b>b</b>) The image after Normalized Detection Index processed.</p> "> Figure 5
<p>Env_Fishery data structure.</p> "> Figure 6
<p>L1B_Fishery data structure.</p> "> Figure 7
<p>The heterogeneous data feature-extraction model structure with Env_Fishery data as input.</p> "> Figure 8
<p>The heterogeneous data feature-extraction model’s structure with L1B_Fishery data as input.</p> "> Figure 9
<p>The structure of the decision fusion model based on multi-source heterogeneous data feature extraction with L1B_Fishery and Env_Fishery datasets as input.</p> "> Figure 10
<p>RMSE change curves under different weight ratios in model validation experiment and generalization experiment.</p> "> Figure 11
<p>The distribution of samples of fisheries’ datasets in each month in 2013~2020.</p> "> Figure 12
<p>The distribution of CPUE values of fisheries datasets after the dataset’s expansion from approximately 2013 to 2020.</p> "> Figure 13
<p>The correlation of the prediction results of CPUE values and true values.</p> "> Figure 14
<p>The distribution of CPUE values of samples in test datasets in October 2020.</p> "> Figure 15
<p>The distribution of CPUE values of samples in test datasets in December 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Processing
2.2.1. Fisheries’ Data Processing
- (1)
- calculate CPUE
- (2)
- process outlier
- (3)
- expand data
2.2.2. Remote-Sensing-Data Processing
- (1)
- Fill in missing Env data
- (2)
- Screen valid L1B data
- (3)
- Match data
2.2.3. Standardization and Normalization of Experiment Data
2.3. Habitat Prediction Methods
2.3.1. Heterogeneous Data Feature-Extraction Model
2.3.2. Decision Fusion Model Based on Multi-Source Heterogeneous Data Feature Extraction
3. Experiment Process and Results Analysis
3.1. Experiment Process
3.1.1. Experiment Environment
3.1.2. Experiment Design
3.1.3. Model Performance Evaluation Index
3.2. Parameter Sensitivity Analysis
3.2.1. Feature-Extraction Fusion Module
3.2.2. Decision Fusion Module
3.3. Analysis of Experiment Results
3.3.1. Results’ Comparative Analysis of Model Validation Experiment
3.3.2. Results Analysis of Generalization Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, J.H.; Han, S.X.; Fan, W.; Zhou, S.F. Saury Resource and Fishing Grounds in the Northwest Pacific. Mar. Fish. 2004, 26, 61–65. [Google Scholar]
- Sun, M.C.; Ye, X.C.; Zhang, J.; Qian, W.G. Exploration of Saury in the Northwest Pacific. Mar. Fish. 2003, 25, 112–115. [Google Scholar]
- Zavolokin, A. Priority Species [EB/OL]. [2018-06-09]. Available online: https://www.npfc.int/priority-species (accessed on 6 February 2022).
- Meng, L.W. Study on Fishery Forecast Research of Cololabis Saira in North Pacific Ocean Based on Habitat Model. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2017. [Google Scholar]
- Hua, C.; Zhu, Q.; Shi, Y.; Liu, Y. Comparative analysis of CPUE standardization of Chinese Pacific saury (Cololabis saira) fishery based on GLM and GAM. Acta Oceanol. Sinica 2019, 38, 100–110. [Google Scholar] [CrossRef]
- Choudhury, S.B.; Jena, B.; Rao, M.V.; Rao, K.H.; Somvanshi, V.S.; Gulati, D.K.; Sahu, S.K. Validation of integrated potential fishing zone (IPFZ) forecast using satellite based chlorophyll and sea surface temperature along the east coast of India. Int. J. Remote Sens. 2007, 28, 2683–2693. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, Q.C.; Zhang, Y.; Shang, L.L. Fishing ground distribution of saury and its correlation with SST in the Northern Pacific high sea in 2010. J. Shanghai Ocean. Univ. 2012, 21, 609–615. [Google Scholar]
- Hua, C.X.; Zhu, Q.C.; Xu, W.; Song, L.M. Review of the life history, resources and fishing grounds of the Pacific saury in the North Pacific Ocean. J. Fish. Sci. China 2019, 26, 811–821. [Google Scholar]
- Tian, Y.J.; Akamine, T.; Suda, M. Modeling the influence of oceanic-climatic changes on the dynamics of Pacific saury in the northwestern Pacific using a life cycle model. Fish. Oceanogr. 2004, 13, 125–137. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, C.X. Forecasting Pacific saury (Cololabis saira) fisheries based on GAM and weighted analysis in the northwest Pacific. J. Fish. Sci. China 2021, 28, 888–895. [Google Scholar]
- Chen, X.Z.; Fan, W.; Cui, X.S.; Zhou, W.; Tang, F. Fishing ground forecasting of Thunnus alalunga in Indian Ocean based on random forest. Acta Oceanol. Sinica 2013, 35, 158–164. [Google Scholar]
- Mugo, R.; Saitoh, S.-I. Ensemble Modelling of Skipjack Tuna (Katsuwonus pelamis) Habitats in the Western North Pacific Using Satellite Remotely Sensed Data; a Comparative Analysis Using Machine-Learning Models. Remote Sens. 2020, 12, 2591. [Google Scholar] [CrossRef]
- Wang, J.T.; Gao, F.; Lei, L.; Guan, W.J.; Chen, X.J. Impacts of temporal and spatial scale as well as environmental data on fishery forecasting models for Illex argentinus in the southwest Atlantic. J. Fish. Sci. China 2015, 22, 1007–1014. [Google Scholar]
- Cavieses Núñez, R.A.; Ojeda Ruiz de la Peña, M.Á.; Flores Irigollen, A.; Rodríguez Rodríguez, M. Deep learning models for the prediction of small-scale fisheries catches: Finfish fishery in the region of “Bahía Magadalena-Almejas”. ICES J. Mar. Sci. 2018, 75, 2088–2096. [Google Scholar] [CrossRef]
- Yuan, H.C.; Zhang, S.; Chen, G.Q.; Liu, H. Fishing ground forecast model of albacore tuna based on fully convolutional networks in the South Pacific. Jiangsu J. Agr. Sci. 2020, 36, 423–429. [Google Scholar]
- Yuan, H.C.; Zhang, S.; Chen, G.Q.; Liu, H. Fishery forecasting in the fishing ground based on dual-modal deep learning model. Jiangsu J. Agr. Sci. 2021, 37, 435–442. [Google Scholar]
- Zhang, X.M.; Zhu, C.Q.; Hua, C.X. Fishing ground distribution of saury and its correlation with marine environment factors in the Northern Parcific high sea in 2013. J. Shanghai Ocean. Univ. 2015, 24, 773–781. [Google Scholar]
- Zhu, H.P. Construction of Fishing Ground Forecast Model of Ommastrephes bartramii in Northwest Pacific Based on Convolutional Neural Network. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2021. [Google Scholar]
- Mammel, M.; Naimullah, M.; Vayghan, A.H.; Hsu, J.; Lee, M.A.; Wu, J.H.; Wang, Y.C.; Lan, K.W. Variability in the Spatiotemporal Distribution Patterns of Greater Amberjack in Response to Environmental Factors in the Taiwan Strait Using Remote Sensing Data. Remote Sens. 2022, 14, 2932. [Google Scholar] [CrossRef]
- Yu, W.; Chen, X.J.; Yi, Q.; Chen, Y. Spatio-temporal distributions and habitat hot spots of the winter-spring cohort of neon flying squid Ommastrephes bartramii in relation to oceanographic conditions in the Northwest Pacific Ocean. Fish. Res. 2016, 175, 103–115. [Google Scholar] [CrossRef]
- Walsh, W.A.; Kleiber, P. Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery. Fish. Res. 2001, 53, 115–131. [Google Scholar] [CrossRef]
- Giri, S.; Purkayastha, S.; Hazra, S.; Chanda, A.; Das, I.; Das, S. Prediction of monthly Hilsa (Tenualosa ilisha) catch in the Northern Bay of Bengal using Bayesian structural time series model. Reg. Stud. Mar. Sci. 2020, 39, 101456. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Staples, K.W.; Chen, Y. The skipjack tuna fishery in the west-central Pacific Ocean: Applying neural networks to detect habitat preferences. Fish. Sci. 2018, 84, 309–321. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Chen, X.; Lei, L.; Chen, Y. Detection of potential fishing zones for neon flying squid based on remote-sensing data in the Northwest Pacific Ocean using an artificial neural network. Int. J. Remote Sens. 2015, 36, 3317–3330. [Google Scholar] [CrossRef]
- Kim, M.; Yang, H.; Kim, J. Sea Surface Temperature and High Water Temperature Occurrence Prediction Using a Long Short-Term Memory Model. Remote Sens. 2020, 12, 3654. [Google Scholar] [CrossRef]
- Yuan, H.C.; Chen, C.H. Prediction of Thunnus alalunga fishery based on fusion deep learning model. Fish. Mod. 2019, 46, 74–81. [Google Scholar]
- Wei, L.; Chen, X.J.; Lei, L.; Wang, J.T. Comparative study on the forecasting models of squid fishing ground in the northwest Pacific Ocean based on BP artificial neural network. J. Shanghai Ocean. Univ. 2017, 26, 450–457. [Google Scholar]
Methods | MSE | MAE | R2 | Advantages and Disadvantages |
---|---|---|---|---|
Space–Time Factor Mean Algorithm | 0.0473 | 0.1207 | 0.9978 | It is a simple method but poor effect in the face of continuous missing values |
K-Nearest-Neighbors Algorithm | 0.0765 | 0.1864 | 0.9965 | Suitable, but with large errors |
Random Forest Algorithm | 0.0261 | 0.1124 | 0.9988 | Effective in the face of continuous missing value, but the algorithm takes too much time |
The Number of CNN Convolution Kernels | The Number of LSTM Block Neurons | RMSE (Val) | R2 (Val) |
---|---|---|---|
64 | 100 | 0.03524 | 0.9506 |
128 | 100 | 0.03163 | 0.9589 |
128 | 120 | 0.02744 | 0.9700 |
256 | 150 | 0.02198 | 0.9808 |
512 | 150 | 0.02124 | 0.9832 |
512 | 200 | 0.02091 | 0.9847 |
Input Datasets | Model Validation Experiment | Generalization Experiment | ||
---|---|---|---|---|
RMSE (Val) | R2 (Val) | RMSE (Test) | R2 (Test) | |
L1B_Fishery | 0.01944 | 0.9856 | 0.08619 | 0.3382 |
L1B_Fishery | 0.01810 | 0.9875 | 0.08568 | 0.3460 |
L1B_Fishery | 0.01649 | 0.9896 | 0.08456 | 0.3631 |
Average (L1B_Fishery) | 0.01801 | 0.9876 | 0.08548 | 0.3491 |
Env_Fishery | 0.02208 | 0.9806 | 0.08186 | 0.3733 |
Env_Fishery | 0.02198 | 0.9808 | 0.08171 | 0.3755 |
Env_Fishery | 0.02174 | 0.9812 | 0.08125 | 0.3827 |
Average (Env_Fishery) | 0.02193 | 0.9809 | 0.08161 | 0.3772 |
Model Validation Experiment | Generalization Experiment | |||
---|---|---|---|---|
RMSE (Val) | R2 (Val) | RMSE (Test) | R2 (Test) | |
1:9 | 0.02037 | 0.9835 | 0.08047 | 0.3944 |
2:8 | 0.01897 | 0.9857 | 0.07959 | 0.4076 |
3:7 | 0.01778 | 0.9874 | 0.07896 | 0.4169 |
4:6 | 0.01684 | 0.9887 | 0.07859 | 0.4223 |
5:5 | 0.01620 | 0.9896 | 0.07849 | 0.4237 |
6:4 | 0.01588 | 0.9901 | 0.07866 | 0.4212 |
7:3 | 0.01592 | 0.9899 | 0.07910 | 0.4148 |
8:2 | 0.01630 | 0.9894 | 0.07980 | 0.4043 |
9:1 | 0.01700 | 0.9885 | 0.08076 | 0.3900 |
Experiment Model | Experiment Datasets | RMSE (Val) | R2 (Val) |
---|---|---|---|
LR | Env_Fishery | 0.13802 | 0.2422 |
BR | Env_Fishery | 0.13802 | 0.2422 |
SVR | Env_Fishery | 0.08460 | 0.7152 |
RT | Env_Fishery | 0.04590 | 0.9161 |
RF | Env_Fishery | 0.03573 | 0.9492 |
BPNN | Env_Fishery | 0.04098 | 0.9332 |
BPNN | L1B_Fishery | 0.03155 | 0.9639 |
CNN | Env_Fishery | 0.04347 | 0.9248 |
CNN | L1B_Fishery | 0.04179 | 0.9359 |
LSTM | Env_Fishery | 0.04011 | 0.9360 |
LSTM | L1B_Fishery | 0.03287 | 0.9604 |
CNN–LSTM–BPNN | Env_Fishery | 0.02963 | 0.9651 |
CNN–LSTM–BPNN | L1B_Fishery | 0.02361 | 0.9795 |
Feature-Extraction Fusion Model | Env_Fishery | 0.02193 | 0.9809 |
Feature-Extraction Fusion Model | L1B_Fishery | 0.01801 | 0.9876 |
Decision Fusion Model | Env_Fishery + L1B_Fishery | 0.01588 | 0.9901 |
Experiment Model | Experiment Datasets | RMSE (Val) | R2 (Val) |
---|---|---|---|
CNN–LSTM–BPNN | Env_Fishery | 0.08738 | 0.3184 |
CNN–LSTM–BPNN | L1B_Fishery | 0.09561 | 0.2756 |
Feature-Extraction Fusion Model | Env_Fishery | 0.08161 | 0.3772 |
Feature-Extraction Fusion Model | L1B_Fishery | 0.08548 | 0.3491 |
Decision Fusion Model | Env_Fishery + L1B_Fishery | 0.07849 | 0.4237 |
Month | All | High | Middle | Low | H_Percent | M_Percent | L_Percent | RMSE |
---|---|---|---|---|---|---|---|---|
5 | 70 | 8 | 12 | 50 | 11.43% | 17.14% | 71.43% | 0.12256 |
6 | 205 | 130 | 43 | 32 | 63.42% | 20.97% | 15.61% | 0.06795 |
7 | 550 | 334 | 200 | 16 | 60.73% | 36.36% | 2.91% | 0.05740 |
8 | 191 | 95 | 96 | 0 | 49.74% | 50.26% | 0 | 0.06085 |
9 | 501 | 273 | 172 | 56 | 54.49% | 34.33% | 11.18% | 0.06999 |
10 | 546 | 256 | 111 | 179 | 46.89% | 20.33% | 32.78% | 0.09823 |
11 | 425 | 267 | 78 | 80 | 62.83% | 18.35% | 18.82% | 0.07001 |
12 | 115 | 70 | 25 | 20 | 60.87% | 21.74% | 17.39% | 0.10715 |
Sum | 2603 | 1433 | 737 | 433 | 55.05% | 28.31% | 16.64% | 0.07849 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Guo, J.; Ma, Z.; Wang, J.; Zhou, R.; Zhang, Y.; Hong, Z.; Pan, H. Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion. Remote Sens. 2022, 14, 5061. https://doi.org/10.3390/rs14195061
Han Y, Guo J, Ma Z, Wang J, Zhou R, Zhang Y, Hong Z, Pan H. Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion. Remote Sensing. 2022; 14(19):5061. https://doi.org/10.3390/rs14195061
Chicago/Turabian StyleHan, Yanling, Junyan Guo, Zhenling Ma, Jing Wang, Ruyan Zhou, Yun Zhang, Zhonghua Hong, and Haiyan Pan. 2022. "Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion" Remote Sensing 14, no. 19: 5061. https://doi.org/10.3390/rs14195061
APA StyleHan, Y., Guo, J., Ma, Z., Wang, J., Zhou, R., Zhang, Y., Hong, Z., & Pan, H. (2022). Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion. Remote Sensing, 14(19), 5061. https://doi.org/10.3390/rs14195061