Temporal Analysis of Ground Movement at a Metal Mine in China
<p>Location and geological map of Jinchuan Nickel Mine in China.</p> "> Figure 2
<p>Characteristics of vertical and horizontal displacement at the Jinchuan Nickel Mine: (<b>a</b>) Distribution of GPS monitoring points at Jinchuan Nickel Mine overlying a contour map of the vertical displacements recorded for October 2015, using May 2005 as a baseline. (<b>b</b>) Diagram of horizontal displacement vectors at mine field No.2 in October 2015, using May 2001 as a reference measure.</p> "> Figure 3
<p>Mine subsidence time series of several monitoring points at the Jinchuan Nickel Mine: (<b>a</b>) monitoring point 2201, (<b>b</b>) monitoring point 2205, (<b>c</b>) monitoring point 6002, (<b>d</b>) monitoring point 6006.</p> "> Figure 4
<p>Power-law relationship between the subsidence and its occurrence cycle.</p> "> Figure 5
<p>Non-detrended and detrended vertical and horizontal displacement time series and autocorrelation plots of the monitoring point 6001 at the Jinchuan Nickel Mine: (<b>a</b>) Horizontal displacement, (<b>b</b>) vertical displacement, (<b>c</b>) detrended horizontal displacement, (<b>d</b>) detrended vertical displacement, (<b>e</b>) autocorrelation plot of horizontal displacement, (<b>f</b>) autocorrelation plot of vertical displacement.</p> "> Figure 6
<p>Power spectra of the horizontal and vertical displacement in the monitoring point 2207 at minefield No.2 and the monitoring point 2003 at minefield No.1 in log <span class="html-italic">S(f)</span>–log <span class="html-italic">(f)</span> and log <span class="html-italic">S(f)</span>–<span class="html-italic">f</span> plots: (<b>a</b>,<b>b</b>): power spectra of the horizontal and vertical displacement of the monitoring point 2207 in a log <span class="html-italic">S(f)</span>–log <span class="html-italic">(f)</span> plot; (<b>c</b>,<b>d</b>): power spectra of the horizontal and vertical displacement of the monitoring point 2207 in a log <span class="html-italic">S(f)</span>–<span class="html-italic">f</span> plot; (<b>e</b>,<b>f</b>): power spectra of the horizontal and vertical displacement of the monitoring point 2003 in a log <span class="html-italic">S(f)</span>–log <span class="html-italic">(f)</span> plot; (<b>g</b>,<b>h</b>): power spectra of the horizontal and vertical displacement of the monitoring point 2003 in a log <span class="html-italic">S(f)</span>–<span class="html-italic">f</span> plot.</p> ">
Abstract
:1. Introduction
2. Background
3. Methods and Results
3.1. GPS Monitoring Design and Monitoring Results
3.1.1. GPS Monitoring Design
3.1.2. Monitoring Results and Ground-Movement Assessment
3.2. Statistical Relationship between the Subsidence and Its Occurrence Cycle
3.3. Signal Analysis Methods and Results
3.3.1. Signal Analysis Methods
3.3.2. Autocorrelation Analysis Results of Ground Movement
3.3.3. Spectral Analysis Results of Ground Movement
4. Discussion
4.1. Self-Affinity, Long-Range Persistence and Scale-Invariance of Ground Movement
4.2. The Periodicity and The Predictability of Mining-Induced Ground Movement
4.3. Underlying Mechanism of Power-Law Behaviors
4.4. Influencing Factors of Power Spectral Exponents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, D.; Zhao, S. Quantitative Analysis of Land Subsidence and Its Effect on Vegetation in Xishan Coalfield of Shanxi Province. ISPRS Int. J. Geo-Inf. 2022, 11, 154. [Google Scholar] [CrossRef]
- Ma, F.S.; Zhao, H.J.; Yuan, R.M.; Guo, J. Ground movement resulting from underground backfill mining in a nickel mine (Gansu Province, China). Nat. Hazards 2015, 77, 1475–1490. [Google Scholar] [CrossRef]
- Hu, W.; Wu, L.; Zhang, W.; Liu, B.; Xu, J. Ground Deformation Detection Using China’s ZY-3 Stereo Imagery in an Opencast Mining Area. ISPRS Int. J. Geo-Inf. 2017, 6, 361. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.J.; Ma, F.S.; Xu, J.M.; Guo, J. In situ stress field inversion and its application in mining-induced rock mass movement. Int. J. Rock Mech. Min. Sci. 2012, 53, 120–128. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.I.; González-Nicieza, C.; Menéndez-Díaz, A.; Álvarez-Vigil, A.E. Generalization of the n–k influence function to predict mining subsidence. Eng. Geol. 2005, 80, 1–36. [Google Scholar] [CrossRef]
- Díaz-Fernández, M.E.; Álvarez-Fernández, M.I.; Álvarez-Vigil, A.E. Computation of influence functions for automatic mining subsidence prediction. Comput. Geosci. 2010, 14, 83–103. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Ma, F.; Guo, J.; Liu, J.; Song, Y. A case study on deformation failure characteristics of overlying strata and critical mining upper limit in submarine mining. Water 2022, 14, 2465. [Google Scholar] [CrossRef]
- Song, J.; Han, C.; Ping, L.; Zhang, J.; Liu, D.; Jiang, M.; Zheng, L.; Zhang, J.; Song, J. Quantitative prediction of mining subsidence and its impact on the environment. Int. J. Min. Sci. Technol. 2012, 22, 69–73. [Google Scholar]
- Yushin, V.I.; Geza, N.I.; Yushkin, V.F.; Polozov, S.S. Measurement of rock movement under blasting in surface mines. J. Min. Sci. 2010, 46, 516–524. [Google Scholar] [CrossRef]
- Yu, G. Application of nonlinear seience in the mining subsidence. J. Fuxing Min. Inst. (Nat. Sci.) 1997, 16, 285–288. [Google Scholar]
- Figueirêdo, P.H.; Moret, M.A.; Pascutti, P.G.; Nogueira, E., Jr.; Coutinho, S. Self-affine analysis of protein energy. Phys. A Stat. Mech. Its Appl. 2010, 389, 2682–2686. [Google Scholar] [CrossRef]
- Suleymanov, A.A.; Abbasov, A.A.; Ismaylov, A.J. Fractal analysis of time series in oil and gas production. Chaos Solitons Fractals 2009, 41, 2474–2483. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. Siam Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L. Self-affine time series: I. Generation and analyses. Adv. Geophys. 1999, 40, 1–90. [Google Scholar]
- Williams, Z.C.; Pelletier, J.D. Self-affinity and surface-area-dependent fluctuations of lake-level time series. Water Resour. Res. 2015, 51, 7258–7269. [Google Scholar] [CrossRef]
- Dussauge, C.; Grasso, J.R.; Helmstetter, A. Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. J. Geophys. Res. Solid Earth 2003, 108, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Malamud, B.D.; Turcotte, D.L. Self-organized criticality applied to natural hazards. Nat. Hazards 1999, 20, 93–116. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L. The applicability of power-law frequency statistics to floods. J. Hydrol. 2006, 322, 168–180. [Google Scholar] [CrossRef]
- Pandey, G.; Lovejoy, S.; Schertzer, D. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. J. Hydrol. 1998, 208, 62–81. [Google Scholar] [CrossRef]
- Teixeira, S.B. Slope mass movements on rocky sea-cliffs: A power-law distributed natural hazard on the Barlavento Coast, Algarve, Portugal. Cont. Shelf Res. 2006, 26, 1077–1091. [Google Scholar] [CrossRef]
- Witt, A.; Malamud, B.D. Quantification of Long-Range Persistence in Geophysical Time Series: Conventional and Benchmark-Based Improvement Techniques. Surv. Geophys. 2013, 34, 541–651. [Google Scholar] [CrossRef] [Green Version]
- Crosby, N. Frequency distributions: From the sun to the earth. Nonlinear Process. Geophys. 2011, 18, 791–805. [Google Scholar] [CrossRef]
- Hergarten, S.; Neugebauer, H.J. Self-organized criticality in a landslide model. Geophys. Res. Lett. 1998, 25, 801–804. [Google Scholar] [CrossRef]
- Palus, M.; Novotna, D.; Zvelebil, J. Fractal rock slope dynamics anticipating a collapse. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2004, 70, 036212. [Google Scholar] [CrossRef] [Green Version]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–394. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Experimental research on deformation failure process of roadway tunnel in fractured rock mass induced by mining excavation. Environ. Earth Sci. 2022, 81, 243. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H.; Liu, G. Study on deformation failure mechanism and support technology of deep soft rock roadway. Eng. Geol. 2020, 264, 105262. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Deformation Characteristics and Control Method of Kilometer-Depth Roadways in a Nickel Mine: A Case Study. Appl. Sci. 2020, 10, 3937. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Case Study of Roadway Deformation Failure Mechanisms: Field Investigation and Numerical Simulation. Energies 2021, 14, 1032. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ma, F.S.; Zhang, Y.M.; Guo, J. Monitoring and Analysis of the Mining-Induced Ground Movement in the Longshou Mine, China. Rock Mech. Rock Eng. 2013, 46, 207–211. [Google Scholar] [CrossRef]
- Hui, X.; Ma, F.; Guo, J.; Xu, J. Power-law correlations of mine subsidence for a metal mine in China. Environ. Geotech. 2021, 8, 559–570. [Google Scholar] [CrossRef]
- Li, G.; Wan, Y.; Guo, J.; Ma, F.; Zhao, H.; Li, Z. A Case Study on Ground Subsidence and Backfill Deformation Induced by Multi-Stage Filling Mining in a Steeply Inclined Ore Body. Remote Sens. 2022, 14, 4555. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ma, F.S.; Zhang, Y.M.; Guo, J. Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China. Environ. Earth Sci. 2013, 68, 1903–1911. [Google Scholar] [CrossRef]
- Hui, X.; Ma, F.; Zhao, H.; Xu, J. Monitoring and statistical analysis of mine subsidence at three metal mines in China. Bull. Eng. Geol. Environ. 2019, 78, 3983–4001. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ma, F.S.; Zhang, Y.M.; Guo, J. Monitoring and assessment of mining subsidence in a metal mine in China. Environ. Eng. Manag. J. 2014, 13, 3015–3024. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; Holden-Day: Oakland, CA, USA, 1976; Volume 37, pp. 238–242. [Google Scholar]
- Priest, S.; Hudson, J. Discontinuity spacings in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 135–148. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Turcotte, D.L. Self-Affine Time Series: II. Applications and Models. Adv. Geophys. 1999, 40, 91–166. [Google Scholar]
- Turcotte, D.L.; Brown, S.R. Fractals and Chaos in Geology and Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Glosup, J. Statistics for long-memory processes. Technometrics 1994, 39, 105–106. [Google Scholar] [CrossRef]
- Beran, J. Statistics for Long-Memory Processes; Chapman & Hall/CRC: New York, NY, USA, 1994. [Google Scholar]
- Turcotte, D.L. The relationship of fractals in geophysics to “the new science”. Chaos Solitons Fractals 2004, 19, 255–258. [Google Scholar] [CrossRef]
- Zaourar, N.; Hamoudi, M.; Mandea, M.; Balasis, G.; Holschneider, M. Wavelet-based multiscale analysis of geomagnetic disturbance. Earth Planets Space 2013, 65, 1525–1540. [Google Scholar] [CrossRef] [Green Version]
- Ghil, M.; Yiou, P.; Hallegatte, S.; Malamud, B.D.; Naveau, P.; Soloviev, A.; Friederichs, P.; Keilis-Borok, V.; Kondrashov, D.; Kossobokov, V.; et al. Extreme events: Dynamics, statistics and prediction. Nonlinear Process. Geophys. 2011, 18, 295–350. [Google Scholar] [CrossRef]
- McAteer, R.T.; Aschwanden, M.J.; Dimitropoulou, M.; Georgoulis, M.K.; Pruessner, G.; Morales, L.; Ireland, J.; Abramenko, V. 25 Years of Self-organized Criticality: Numerical Detection Methods. Space Sci. Rev. 2016, 198, 217–266. [Google Scholar] [CrossRef] [Green Version]
- Corona, O.L.; Padilla, P.; Escolero, O.; Frank, A.; Fossion, R. Lévy flights, 1/f noise and self organized criticality in a traveling agent model. J. Mod. Phys. 2013, 4, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Yao, L. Self-organized criticality and its application in the slope disasters under gravity. Sci. China Ser. E Technol. Sci. 2003, 46, 20–30. [Google Scholar] [CrossRef]
- Pruessner, G. Self-Organised Criticality: Theory, Models and Characterization; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-Organized Criticality. Phys. Rev. A 1988, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, J.; Watanabe, S.; Furuya, T. Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan. Geomorphology 2003, 50, 349–364. [Google Scholar] [CrossRef]
- Stark, C.P.; Hovius, N. The characterization of landslide size distributions. Geophys. Res. Lett. 2001, 28, 1091–1094. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Pignoni, R. The Fractal Geometry of Nature; WH freeman: New York, NY, USA, 1983. [Google Scholar]
- Bak, P. How nature works: The science of self-organized criticality. Nature 1996, 383, 772–773. [Google Scholar]
- Loh, C.H.; Su, G.W.; Yeh, C.S. Development of stochastic ground movement-study on smart-1 array data. Soil Dyn. Earthq. Eng. 1989, 8, 22–31. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B. The role of material properties and landscape morphology on landslide size distributions. Earth Planet. Sci. Lett. 2013, 361, 310–319. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Galli, M.; Reichenbach, P.; Rossi, M. Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 2008, 96, 105–122. [Google Scholar] [CrossRef]
- Swift, G. Relationship between joint movement and mining subsidence. Bull. Eng. Geol. Environ. 2014, 73, 163–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z.; Liu, X. Testing study on fractal correlation law of cracks in mined rock masses. Chin. J. Rock Mech. Eng. 2004, 23, 3426–3429. [Google Scholar]
Subsidence Value (mm) | Total Monitoring Time (month) | Occurrence Time | Occurrence Cycle (month) |
---|---|---|---|
0~10 | 174 | 6491 | 0.03 |
10~20 | 174 | 2763 | 0.06 |
20~30 | 174 | 1441 | 0.12 |
30~40 | 174 | 1399 | 0.12 |
40~50 | 174 | 899 | 0.19 |
50~60 | 174 | 550 | 0.32 |
60~70 | 174 | 217 | 0.80 |
70~80 | 174 | 150 | 1.16 |
80~90 | 174 | 275 | 0.63 |
90~100 | 174 | 58 | 3.00 |
100~110 | 174 | 50 | 3.48 |
110~120 | 174 | 33 | 5.27 |
120~130 | 174 | 29 | 6.00 |
130~140 | 174 | 25 | 6.96 |
140~150 | 174 | 30 | 5.80 |
150~160 | 174 | 27 | 6.44 |
160~170 | 174 | 21 | 8.29 |
170~180 | 174 | 23 | 7.57 |
180~190 | 174 | 19 | 9.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Hui, X.; Ma, F.; Guo, J. Temporal Analysis of Ground Movement at a Metal Mine in China. Remote Sens. 2022, 14, 4993. https://doi.org/10.3390/rs14194993
Li G, Hui X, Ma F, Guo J. Temporal Analysis of Ground Movement at a Metal Mine in China. Remote Sensing. 2022; 14(19):4993. https://doi.org/10.3390/rs14194993
Chicago/Turabian StyleLi, Guang, Xin Hui, Fengshan Ma, and Jie Guo. 2022. "Temporal Analysis of Ground Movement at a Metal Mine in China" Remote Sensing 14, no. 19: 4993. https://doi.org/10.3390/rs14194993
APA StyleLi, G., Hui, X., Ma, F., & Guo, J. (2022). Temporal Analysis of Ground Movement at a Metal Mine in China. Remote Sensing, 14(19), 4993. https://doi.org/10.3390/rs14194993