Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data
<p>Map of Chaohu Lake, China.</p> "> Figure 2
<p>Number of MSI Images acquired over Chaohu Lake between 2016 and 2020.</p> "> Figure 3
<p>Overall technical process of CyanoHABs extraction based on DL network.</p> "> Figure 4
<p>Distinguishing between CyanoHABs and background water body under different color composite methods. (<b>a</b>–<b>c</b>) Display effects of an image with cloud coverage and (<b>d</b>–<b>f</b>) an image without cloud coverage. By comparing the enlarged images of local areas, the spectral and textural features of CyanoHABs displayed by false color synthesis (S–N–R) are more obvious and the CyanoHABs are more clearly distinguished from the background water body. R: red; G: green; B: blue; N: near infrared; S: shortwave infrared.</p> "> Figure 5
<p>Structure of the U-Net network model used. Each blue rectangle represents a multi-channel feature map, and the number of channels is displayed at the top of the rectangle. The white rectangle represents the copied feature maps (represented by yellow dashed lines and gray arrows). The feature map size in each of the five rows is marked in the first column (e.g., 1024 × 1024).</p> "> Figure 6
<p>“Sliding window prediction” of CyanoHABs using a model. The red dashed box indicates the starting position of clipping, and the blue dashed boxes indicate the position to which the sliding window slides. The blue arrows indicate the sliding direction.</p> "> Figure 7
<p>Statistics of “ground truth” results based on visual interpretation. (<b>a</b>) The best extraction threshold distribution of CyanoHABs in 110 images and (<b>b</b>) the change of CyanoHABs area with time between 2016 and 2020.</p> "> Figure 8
<p>Examples of partial images of the CyanoHABs training set (sub-images and sub-labels). The first line indicates the 10-band input images displayed in false color synthesis (shortwave infrared–near infrared–red). The green and yellow parts represent the CyanoHABs. The second line are the labels corresponding to the input images. The white part represents the CyanoHABs, with a value of 1, and the black part is the background, with a value of 0.</p> "> Figure 9
<p>Prediction results of CyanoHABs in Chaohu Lake (4 September 2018), the numbers in brackets in b–e represent the area of the extracted CyanoHABs. (<b>a</b>) the original false color synthetic S–N–R) image, (<b>b</b>) extraction result of visual interpretation (‘Ground Truth’) (<b>c</b>) extraction result of CyanoHABs from DL model, (<b>d</b>) extraction result of CyanoHABs by the gradient mode method, (<b>e</b>) extraction result of CyanoHABs by the fixed threshold method, (<b>f</b>) extraction result of CyanoHABs by the Otsu method. R: red; N: near infrared; S: shortwave infrared.</p> "> Figure 10
<p>Scatter plots of the CyanoHABs area predicted by four different methods with comparison to ground truth.</p> "> Figure 11
<p>Frequency map between 2016–2020 of the CyanoHABs outbreaks using different methods.</p> "> Figure 12
<p>Temporal change and spatial distribution map of CyanoHABs frequency in Chaohu Lake from 2017 to 2020. Data for 2016 was excluded as there were too few images.</p> "> Figure 13
<p>(<b>a</b>) Scatter plot of surface value area and predicted result area of CyanoHABs in Taihu Lake; (<b>b</b>) Outbreak frequency map of CyanoHABs in Taihu Lake by “ground truth” data; (<b>c</b>) Outbreak frequency map of CyanoHABs by predicted results by the U-Net model.</p> "> Figure 14
<p>Sensitivity of the DL-based CyanoHABs prediction model to cloud (red indicates the extracted CyanoHABs area).</p> ">
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data Description
3. Methods
3.1. Overall Technical Process
3.2. Sentinel-2 MSI Data Pre-Processing
3.3. Extraction of “Ground Truth” of CyanoHABs Based on Visual Interpretation
3.3.1. Cloud Recognition
3.3.2. Extraction of CyanoHABs Based on FAI Threshold Determined by Visual Interpretation
3.4. Training of CyanoHABs Extraction Model Based on DL
3.5. Prediction of CyanoHABs Based on the DL Model
3.6. Accuracy Evaluation
3.6.1. Accuracy Evaluation Indexes for Model Training
3.6.2. Accuracy Evaluation Indexes for Model Prediction
3.6.3. Other Comparison Methods
4. Results
4.1. CyanoHABs Extraction Results Based on Visual Interpretation
4.2. CyanoHABs Extraction Results Based on Automation Methods
4.2.1. CyanoHABs Extraction DL Model and Results
4.2.2. CyanoHABs Extraction Parameters Based on Other Comparison Methods
4.3. Accuracy Evaluation and Comparison
4.3.1. Accuracy Evaluation on the Pixel Level
4.3.2. Accuracy Evaluation on Area Level
4.3.3. Accuracy Evaluation on Long Time Series Frequency Map Level
4.4. Spatial and Temporal Change Analysis of CyanoHABs
5. Discussion
5.1. Applicability of the DL Model
5.2. Sensitivity of the DL Model to Clouds
5.3. Limitations of the DL Model
5.4. Extracting CyanoHABs by DL Based on OLI-MSI Virtual Constellation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication of Lakes. In Eutrophication: Causes, Consequences and Control; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 55–71. [Google Scholar]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sci. Pollut. Res. Int. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, J.M.; Dickey, D.A.; Kinder, C.A.; Reed, R.E.; Mallin, M.A.; McIver, M.R.; Cahoon, L.B.; Melia, G.; Brownie, C.; Smith, J.; et al. Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: A decadal study of anthropogenic and climatic influences. Limnol. Oceanogr. 2006, 51, 463–487. [Google Scholar] [CrossRef]
- Walsby, A.E.; Hayes, P.K.; Boje, R.; Stal, L.J. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol. 1997, 136, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Shi, D.; Shi, M.; Li, R.; Song, L.; Fang, H.; Yu, G.; Li, X.; Du, G. Formation of cyanobacterial blooms in Lake Chaohu and the photosynthesis of dominant species hypothesis. Acta Ecol. Sin. 2011, 31, 2968–2977. [Google Scholar]
- Kong, F.; Ronghua, M.A.; Junfeng, G.A.O.; Xiaodong, W.U. The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. J. Lake Sci. 2009, 21, 314–328. [Google Scholar]
- Zhang, B.; Li, J.S.; Shen, Q.; Wu, Y.H.; Zhang, F.F.; Wang, S.L.; Yao, Y.; Guo, L.N.; Yin, Z.Y. Recent research progress on long time series and large scale optical remote sensing of inland water. Natl. Remote Sens. Bull. 2021, 25, 37–52. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Zhang, F.; Shen, Q. Distinguishing cyanobacterial bloom from floating leaf vegetation in Lake Taihu based on medium-resolution imaging spectrometer (MERIS) data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 34–44. [Google Scholar] [CrossRef]
- Feng, L. Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing. J. Lake Sci. 2021, 33, 647–652. [Google Scholar]
- Duan, H.; Zhang, S.; Zhang, Y. Cyanobacteria bloom monitoring with remote sensing in Lake Taihu. J. Lake Sci. 2008, 20, 145–152. [Google Scholar]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Xu, D.; Pu, Y.; Zhu, M.; Luan, Z.; Shi, K. Automatic detection of algal blooms using sentinel-2 MSI and Landsat OLI images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8497–8511. [Google Scholar] [CrossRef]
- Shiyu, H.E.; Xiaoshuang, M.A.; Yanlan, W.U. Long Time Sequence Monitoring of Chaohu Algal Blooms Based on Multi-Source Optical and Radar Remote Sensing. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018. [Google Scholar]
- Zhu, L.; Wang, Q.; Wu, C.Q.; Wu, D. Monitoring and annual statistical analysis of algal blooms in Chaohu based on remote sensing. Environ. Monit. China 2013, 29, 162–166. [Google Scholar] [CrossRef]
- Lu, W.; Yu, L.; Ou, X.; Li, F. Relationship between occurrence frequency of cyanobacteria bloom and meteorological factors in Lake Dianchi. J. Lake Sci. 2017, 29, 534–545. [Google Scholar]
- Pan, M.; Yang, K.; Zhao, X.; Xu, Q.; Peng, S.; Hong, L. Remote Sensing Recognition, Concentration Classification and Dynamic Analysis of Cyanobacteria Bloom in Dianchi Lake Based on MODIS Data. In Proceedings of the 2012 20th International Conference on Geoinformatics, Hong Kong, China, 15–17 June 2012. [Google Scholar]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.S.; Shang, Y.X.; Ma, J.H.; Wen, Z.D.; Du, J. Remote sensing of harmful algal blooms variability for lake Hulun using adjusted FAI (AFAI) algorithm. J. Environ. Inf. 2018, 34, 201700385. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Visser, P.M.; Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 2018, 63, 1711–1726. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Y.-Y.; Li, Z.; Ma, J.-R. CH4 fluxes during the algal bloom in the Pengxi River. Huan Jing Ke Xue 2018, 39, 1578–1588. [Google Scholar]
- Duan, H.; Loiselle, S.A.; Zhu, L.; Feng, L.; Zhang, Y.; Ma, R. Distribution and incidence of algal blooms in Lake Taihu. Aquat. Sci. 2015, 77, 9–16. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 2010, 115, C04002. [Google Scholar] [CrossRef]
- Oyama, Y.; Matsushita, B.; Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Zhao, D.; Li, J.; Hu, R.; Shen, Q.; Zhang, F. Landsat-satellite-based analysis of spatial–temporal dynamics and drivers of CyanoHABs in the plateau Lake Dianchi. Int. J. Remote Sens. 2018, 39, 8552–8571. [Google Scholar] [CrossRef]
- Song, K.; Fang, C.; Jacinthe, P.-A.; Wen, Z.; Liu, G.; Xu, X.; Shang, Y.; Lyu, L. Climatic versus anthropogenic controls of decadal trends (1983-2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 2021, 55, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Qing, S.; Jin, E.; Hao, Y.; Zhao, W. A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: A case study of Hulun Lake, China. Int. J. Remote Sens. 2021, 42, 4514–4535. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Dai, Y.; Hu, C.; Gibson, L.; Tang, J.; Lee, Z.; Wang, Y.; Cai, X.; Liu, J.; et al. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat. Geosci. 2022, 15, 130–134. [Google Scholar] [CrossRef]
- Li, J.; Knapp, D.E.; Fabina, N.S.; Kennedy, E.V.; Larsen, K.; Lyons, M.B.; Murray, N.J.; Phinn, S.R.; Roelfsema, C.M.; Asner, G.P. A global coral reef probability map generated using convolutional neural networks. Coral Reefs 2020, 39, 1805–1815. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Cheng, G.; Lang, C.; Wu, M.; Xie, X.; Yao, X.; Han, J. Feature Enhancement Network for Object Detection in Optical Remote Sensing Images. J. Remote Sens. 2021, 2021, 9805389. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.N.; Luo, J.C. Deep learning for processing and analysis of remote sensing big data: A technical review. Big Earth Data 2021, 5, 1–34. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef]
- Castelo-Cabay, M.; Piedra-Fernandez, J.A.; Ayala, R. Deep learning for land use and land cover classification from the Ecuadorian Paramo. Int. J. Digit. Earth. 2022, 15, 1001–1017. [Google Scholar] [CrossRef]
- Liu, B.; Li, X.; Zheng, G. Coastal inundation mapping from bitemporal and dual-polarization SAR imagery based on deep convolutional neural networks. J. Geophys. Res. Oceans 2019, 124, 9101–9113. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Automatic extraction of Sargassum features from sentinel-2 MSI images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2579–2597. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef] [PubMed]
- Arellano-Verdejo, J.; Lazcano-Hernandez, H.E.; Cabanillas-Terán, N. ERISNet: Deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. PeerJ 2019, 7, e6842. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.R.; Kumar, A.; Temimi, M.; Bull, D.R. HABNet: Machine learning, remote sensing-based detection of harmful algal blooms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3229–3239. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Bilal, M.; Wang, S.; Sun, D.; Chen, Y. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: Case study of Yellow Sea using GOCI images. Opt. Express 2018, 26, 26810–26829. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Satellite remote sensing of pelagic Sargassum macroalgae: The power of high resolution and deep learning. Remote Sens. Environ. 2021, 264, 112631. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Dong, X.; Liu, E. Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica 2013, 43, 10–17. [Google Scholar] [CrossRef]
- Ma, J.; Jin, S.; Li, J.; He, Y.; Shang, W. Spatio-temporal variations and driving forces of harmful algal blooms in Chaohu Lake: A multi-source remote sensing approach. Remote Sens. 2021, 13, 427. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Zhang, M.; Duan, H.; Loiselle, S.; Xu, J. Fourteen-year record (2000–2013) of the spatial and temporal dynamics of floating algae blooms in lake Chaohu, observed from time series of MODIS images. Remote Sens. 2015, 7, 10523–10542. [Google Scholar] [CrossRef]
- Zong, J.-M.; Wang, X.-X.; Zhong, Q.-Y.; Xiao, X.-M.; Ma, J.; Zhao, B. Increasing outbreak of cyanobacterial blooms in large lakes and reservoirs under pressures from climate change and anthropogenic interferences in the middle–lower Yangtze River basin. Remote Sens. 2019, 11, 1754. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, X.; Yang, Z.; Chen, K. The variation of water quality from 2012 to 2018 in Lake Chaohu and the mitigating strategy on cyanobacterial blooms. J. Lake Sci. 2020, 32, 11–20. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science; Springer International Publishing: New York, NY, USA, 2015; pp. 234–241. [Google Scholar]
- Yang, Q.Q.; Jin, C.Y.; Li, T.W.; Yuan, Q.Q.; Shen, H.F.; Zhang, L.P. Research progress and challenges of data driven quantitative remote sensing. Natl. Remote Sens. Bull. 2022, 26, 268–285. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Iglovikov, V.; Mushinskiy, S.; Osin, V. Satellite Imagery Feature Detection using deep convolutional neural network: A Kaggle competition. arXiv 2017, arXiv:1706.06169. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A review on deep learning techniques applied to semantic segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [Google Scholar] [CrossRef]
- Li, J.; Roy, D. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 12. [Google Scholar] [CrossRef]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Liu, M.; Ling, H.; Wu, D.; Su, X.; Cao, Z. Sentinel-2 and Landsat-8 Observations for Harmful Algae Blooms in a Small Eutrophic Lake. Remote Sens. 2021, 13, 4479. [Google Scholar] [CrossRef]
Methods | Recall | Precision | F1-Score | RE |
---|---|---|---|---|
DL Model | 0.89 | 0.91 | 0.90 | 3% |
Gradient Mode | 0.97 | 0.69 | 0.81 | 40% |
Fixed Threshold | 0.94 | 0.72 | 0.81 | 31% |
Otsu | 0.36 | 0.95 | 0.53 | 62% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Li, J.; Zhao, H.; Wang, C.; Hong, D.; Du, Y.; Mu, Y.; Tian, B.; Xie, Y.; Yin, Z.; et al. Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data. Remote Sens. 2022, 14, 4763. https://doi.org/10.3390/rs14194763
Yan K, Li J, Zhao H, Wang C, Hong D, Du Y, Mu Y, Tian B, Xie Y, Yin Z, et al. Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data. Remote Sensing. 2022; 14(19):4763. https://doi.org/10.3390/rs14194763
Chicago/Turabian StyleYan, Kai, Junsheng Li, Huan Zhao, Chen Wang, Danfeng Hong, Yichen Du, Yunchang Mu, Bin Tian, Ya Xie, Ziyao Yin, and et al. 2022. "Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data" Remote Sensing 14, no. 19: 4763. https://doi.org/10.3390/rs14194763
APA StyleYan, K., Li, J., Zhao, H., Wang, C., Hong, D., Du, Y., Mu, Y., Tian, B., Xie, Y., Yin, Z., Zhang, F., & Wang, S. (2022). Deep Learning-Based Automatic Extraction of Cyanobacterial Blooms from Sentinel-2 MSI Satellite Data. Remote Sensing, 14(19), 4763. https://doi.org/10.3390/rs14194763