Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations
<p>(<b>a</b>) Spatial distribution of the 20-year average TCO over the Yangtze River Delta Urban Agglomerations during 2000–2019. This result was calculated by averaging all annual TCO over the study area. (<b>b</b>) Longitudinal TCO variation in the study area. (<b>c</b>) Location of the study area. (<b>d</b>) Latitudinal TCO variation in the study area.</p> "> Figure 2
<p>A line chart of the annual variation in the TCO and the meteorological factors over the Yangtze River Delta Urban Agglomerations during 2000–2019.</p> "> Figure 3
<p>The seasonal variation distribution of the TCO over the Yangtze River Delta Urban Agglomerations during 2000–2019. These results were calculated by averaging the monthly data in spring (Spr., the months from March to May in a year) during 2000–2019, and the same progressed for summer (Sum., the months from June to August in a year), autumn (Aut., the months from September to November in a year), and winter (Win., the months from December to February in a year).</p> "> Figure 4
<p>The spatial distribution of the 20-year average values of the meteorological factors of temperature (<b>a</b>) precipitation (<b>b</b>) vapor pressure (<b>c</b>) AAI (<b>d</b>) and total solar radiation (<b>e</b>) over the Yangtze River Delta Urban Agglomerations during 2000–2019.</p> "> Figure 5
<p>(<b>a</b>) The monthly variation curves of the TCO and meteorological factors over the Yangtze River Delta Urban Agglomerations within a year; (<b>b</b>) the monthly change in the TCO of the Yangtze River Delta Urban Agglomerations during 2000–2019. Note: The TCO and meteorological factors in <a href="#remotesensing-14-04576-f005" class="html-fig">Figure 5</a>a are the mean values of the same months for all years. <a href="#remotesensing-14-04576-f005" class="html-fig">Figure 5</a>b shows the monthly variation of the TCO for 20 years.</p> "> Figure 6
<p>The fitting line charts of the TCO historical results during 2000–2019 over the Yangtze River Delta Urban Agglomerations by the polynomial function (<b>a</b>), the trigonometric function (<b>b</b>), and the Fourier function (<b>c</b>). Note: The fitted models were constructed based on the annual scale data, so the data corresponding to integer years (such as 2000, 2008, 2009, 2014, etc.) are meaningful and accurate data, and there is little reference in the other values and the fluctuance patterns of the fitting lines; for real interannual changes, please refer to <a href="#remotesensing-14-04576-f005" class="html-fig">Figure 5</a>b.</p> "> Figure 7
<p>The line chart of the TCO prediction results over the Yangtze River Delta Urban Agglomerations during 2020–2030. The red points stand for the TCO prediction results over the study area in each corresponding year. The dotted blue line shows the fitting line of the TCO predicted results based on the constructed Fourier function. The solid gray line is the linear fitting line for the TCO prediction results, and its linear fitting function is shown in the upper-right of the figure. Note: Only the data corresponding to integer years (such as 2020, 2025, 2027, etc.) are meaningful and accurate data, and there is little reference in the other values and the fluctuance patterns of the fitting lines. For more precise interannual changes, please refer to <a href="#remotesensing-14-04576-f0A8" class="html-fig">Figure A8</a>.</p> "> Figure A1
<p>Spatial Distribution of Annual the TCO over the Yangtze River Delta Urban Agglomerations during 2000–2019. This result is calculated by averaging all monthly TCO in each year over the study area.</p> "> Figure A2
<p>Spatial Distribution of Monthly the TCO over the Yangtze River Delta Urban Agglomerations during 2000–2019. The monthly TCO distribution of Jan. is calculated by averaging the TCO in Jan. of the 20 years over the study area. The same progress was conducted on the other months in a year.</p> "> Figure A3
<p>Lollipop Diagram of Monthly (<b>a</b>) and Seasonal (<b>b</b>) Spatial Distributions of the TCO over the Yangtze River Delta Urban Agglomerations during 2000–2019.</p> "> Figure A4
<p>Scatter plot of inter-annual time variation of the TCO and meteorological factors.</p> "> Figure A5
<p>Scatter plot of inter-annual spatial variation of the TCO and meteorological factors.</p> "> Figure A6
<p>Scatterplot of the TCO and socioeconomic factors. Where PPIVR, PSIVR, and PTIVR distribution are Proportion of Primary Industry Value over Regional GDP, Proportion of Secondary Industry Value over Regional GDP, and Proportion of Tertiary Industry Value over Regional GDP.</p> "> Figure A7
<p>Fourier function fit plots of historical results of monthly changes in the TCO for the Yangtze River Delta Urban Agglomeration from 2000−2019. Notes: y = 287.9 − 1.688 × cos(x × 1.257) + 1.326 × sin(x × 1.257) − 0.6962 × cos(2 × x × 1.257) − 3.16 × sin(2 × x × 1.257)+1.13 × cos(3 × x × 1.257) − 2.256 × sin(3 × x × 1.257) + 0.5984 × cos(4 × x × 1.257) + 1.87 × sin(4 × x × 1.257) + 0.5391 × cos(5 × x × 1.257) − 19.38 × sin(5 × x × 1.257) + 1.407 × cos(6 × x × 1.257) + 0.3501 × sin(6 × x × 1.257) − 0.1064 × cos(7 × x × 1.257) + 1.514 × sin(7 × x × 1.257) + 0.1737 × cos(8 × x × 1.257) + 1.581 × sin(8 × x × 1.257). Number of terms is 8, R<sup>2</sup> is 0.74, SSE is 1.709 × 10<sup>4</sup>, and RMSE is 8.773.</p> "> Figure A8
<p>Line graph of the projected monthly change in the TCO results for the Yangtze River Delta Urban Agglomeration in 2020–2030. The Red Points Stand for the TCO Prediction Results over the Studied Area in Each Corresponding Year. The Dotted Blue Line is the Fitting Line of the TCO Predicted Results based on the Constructed Fourier Function. The Solid Gray Line is the Linear Fitting Line for the TCO Prediction Results, and its linear Fitting Function is Shown in the Up-right of the Figure.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. The Studied Area
2.2. Data
2.3. Methods
2.3.1. Correlation Analyses
2.3.2. Time-Lag Effects Analyses
2.3.3. Predictive Studies on TOC
3. Results
3.1. Spatio-Temporal Variations of TCO over the Yangtze River Delta Urban Agglomerations
3.2. TCO and Meteorological Factors Analysis
3.2.1. Analysis of Overall and Interannual Variability of TCO and Meteorological Factors
3.2.2. Analysis of Inter-Monthly and Seasonal Variation of TCO and Meteorological Factors
3.3. Correlation Analysis between TCO and Socioeconomic Factors
3.4. Predictive Analysis on TCO over the Yangtze River Delta Urban Agglomerations
3.4.1. Comparisons of the Fitting Functions of Historical TCO in the Yangtze River Delta Urban Agglomerations
3.4.2. Analysis on the Prediction Results of Future TCO in the Yangtze River Delta Urban Agglomeration
4. Discussion
4.1. Analysis of the Overall Spatial Distribution and Interannual Temporal Variation of TCO
4.2. Analysis of Seasonal and Monthly Variations of TCO
4.3. Analysis of TCO and Driving Factors
4.4. TCO Prediction Analysis
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Mean | Min | Max | Median | STD | RMSE |
---|---|---|---|---|---|---|
TCO (DU) | 286.25 | 267.00 | 309.55 | 284.78 | 14.64 | 4.23 |
Temperature (°C) | 16.32 | 3.74 | 28.15 | 17.07 | 8.77 | 2.53 |
Precipitation (mm) | 105.89 | 48.14 | 192.59 | 94.88 | 51.64 | 14.91 |
Vapour pressure (kPa) | 15.73 | 5.74 | 29.71 | 14.05 | 8.72 | 2.52 |
AAI | −0.32 | −0.89 | 0.17 | −0.28 | 0.38 | 0.11 |
Total solar radiation (w/m2) | 252.34 | 185.68 | 321.85 | 254.74 | 48.13 | 13.89 |
References
- Lucas, R.M.; Ponsonby, A.L. Ultraviolet radiation and health: Friend and foe. Med. J. Aust. 2002, 177, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Meraner, K.; Schmidt, H. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atmos. Chem. Phys. 2018, 18, 1079–1089. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Chang. 2014, 4, 817–821. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Kumar, P.; Nair, P.J.; Pandey, P.C. Emergence of ozone recovery evidenced by reduction in the occurrence of Antarctic ozone loss saturation. Npj Clim. Atmos. Sci. 2018, 1, 42. [Google Scholar] [CrossRef]
- Weber, M.; Coldewey-Egbers, M.; Fioletov, V.E.; Frith, S.M.; Loyola, D. Total ozone trends from 1979 to 2016 derived from five merged observational datasets—The emergence into ozone recovery. Atmos. Chem. Phys. 2017, 2017, 1–37. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Lefèvre, F.; Raj, S.; Kumar, P. The ozone hole measurements at the Indian station Maitri in Antarctica. Polar. Sci. 2021, 30, 100701. [Google Scholar] [CrossRef]
- Kumar, R.R.; Vankayalapati, K.R.; Soni, V.K.; Dasari, H.P.; Desamsetti, S. Comparison of INSAT-3D retrieved total column ozone with ground-based and AIRS observations over India. Sci. Total Environ. 2021, 793, 148518. [Google Scholar] [CrossRef] [PubMed]
- Van der A, R.J.; Allaart, M.A.F.; Eskes, H.J. Extended and refined multi sensor reanalysis of total ozone for the period 1970–2012. Atmos. Meas. Tech. 2015, 8, 3021–3035. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.; Iodice, F.; Lelli, L.; Zschaege, A.; Retscher, C. Retrieval of total ozone column using high spatial resolution top-of-atmosphere measurements by OLCI/S-3 in the ozone Chappuis absorption bands over bright underlying surfaces. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107903. [Google Scholar] [CrossRef]
- Veefkind, J.P.; de Haan, J.F.; Brinksma, E.J.; Kroon, M.; Levelt, P.F. Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1239–1244. [Google Scholar] [CrossRef]
- Eskes, H.J.; Brinksma, E.J.; Veefkind, J.P.; Valks, P.J.M. Retrieval and validation of ozone columns derived from measurements of SCIAMACHY on Envisat. Atmos. Chem. Phys. 2005, 5, 4429–4475. [Google Scholar] [CrossRef]
- Valks, P.; Haan, J.D. TOGOMI: An improved total ozone retrieval algorithm for GOME. In XX Quadrennial Ozone Symposium; University of Athens: Athens, Greece; Volume 1, pp. 2004–2008.
- Richard, T.A.; Araya, C.; Felipe, L.O.; Morales, L.; Morales, R.G.E.; Leiva G, M.A. Trend and recovery of the total ozone column in South America and Antarctica. Clim. Dynam. 2017, 49, 3735–3752. [Google Scholar] [CrossRef]
- Correa, M.P.; Yamamoto, A.L.C.; Moraes, G.R.; Godin Beekmann, S.; Mahé, E. Changes in the total ozone content over the period 2006 to 2100 and the effects on the erythemal and vitamin D effective UV doses for South America and Antarctica. Photoch. Photobio. Sci. 2019, 18, 2931–2941. [Google Scholar] [CrossRef]
- Zou, M.; Xiong, X.; Wu, Z.; Yu, C. Ozone Trends during 1979–2019 over Tibetan Plateau Derived from Satellite Observations. Front. Earth Sci. 2020, 8, 579624. [Google Scholar] [CrossRef]
- Shin, D.; Oh, Y.-S.; Seo, W.; Chung, C.-Y.; Koo, J.-H. Total Ozone Trends in East Asia from Long-Term Satellite and Ground Observations. Atmosphere 2021, 12, 982. [Google Scholar] [CrossRef]
- Azmi, N.A.; Awang, N.R.; Ya’Acob, S.H. Comparative study of variation of ground level ozone concentrations and total column ozone concentrations over Klang Valley. In Proceedings of the 3rd International Conference on Tropical Resources and Sustainable Sciences, Kelantan, Malaysia, 14–15 July 2021; Volume 842, p. 012039. [Google Scholar]
- Fishman, J.; Vukovich, F.M.; Cahoon, D.R.; Shipham, M.C. The Characterization of an Air Pollution Episode Using Satellite Total Ozone Measurements. J. Clim. Appl. Meteor. 1987, 26, 1638–1654. [Google Scholar] [CrossRef]
- Fishman, J.; Wozniak, A.E.; Creilson, J.K. Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: Identification of the regional aspects of air pollution. Atmos. Chem. Phys. 2017, 3, 893–907. [Google Scholar] [CrossRef]
- Wang, W.; van der A, R.; Ding, J.; Michiel Van, W.; Cheng, T. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7253–7269. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef] [PubMed]
- de Laat, A.T.J.; van Weele, M.; van der A, R.J. Onset of Stratospheric Ozone Recovery in the Antarctic Ozone Hole in Assimilated Daily Total Ozone Columns. J. Geophys. Res. Atmos. 2017, 122, 11880–11899. [Google Scholar] [CrossRef]
- Pazmiño, A.; Godin-Beekmann, S.; Hauchecorne, A.; Claud, C.; Khaykin, S. Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring. Atmos. Chem. Phys. 2018, 18, 7557–7572. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, M.; Stammes, P.; Torres, O.; Koelemeijer, R.B.A. Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS. J. Geophys. Res. Atmos. 2005, 110, D01201. [Google Scholar] [CrossRef]
- Tilstra, L.G.; Graaf, M.D.; Aben, I.; Stammes, P. In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index. J. Geophys. Res. Atmos. 2012, 117, D06209. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Shan, Y.; Li, L.; Liu, Q.; Qin, Y.; Chen, Y.; Shi, Y.; Liu, X.; Wang, H.; Ling, Y. Spatial-Temporal Distribution of Ozone and Its Precursors in the Typical Cities in the Yangtze River Delta. Desert. Oasis. Meteor. 2016, 10, 7. (In Chinese) [Google Scholar] [CrossRef]
- Yu, R.; Liu, M.; Li, L.; Song, J.; Sun, R.; Zhang, G.; Xu, L.; Mu, R. Spatial and temporal variation of atmospheric ozone column concentration and influencing factors in the Yangtze River Delta region in recent 15 years. Acta Scient. Circum. 2021, 41, 770–784. (In Chinese) [Google Scholar] [CrossRef]
- Bian, Y.; Ou, J.; Huang, Z.; Zhong, Z.; Zheng, J. Evolution of Anthropogenic Air Pollutant Emissions in Guangdong Province, China, from 2006 to 2015. Atmos. Chem. Phys. 2019, 19, 11701–11719. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; An, J.; Huang, L.; Yan, R.; Huang, C.; Yarwood, G. Ozone source apportionment over the Yangtze River Delta region, China: Investigation of regional transport, sectoral contributions and seasonal differences. Atmos. Environ. 2019, 202, 269–280. [Google Scholar] [CrossRef]
- Yang, J. Differences in Ozone Distribution Patterns of East and West Parts in the North of China Based on Satellite Data. J. Appl. Meteor.Sci. 2009, 20, 1–7. [Google Scholar] [CrossRef]
- ZOU, H.; Gao, Y. Ozone deficit and trend over the large scale mountains. Mounta. Resear. 1997, 15, 209–213. (In Chinese) [Google Scholar] [CrossRef]
- Wei, H.; Zheng, Y. Analysis of the temporal and spatial distributions of the total ozone over China. J. Nanjing Inst. Meteor. 2006, 29, 390–395. (In Chinese) [Google Scholar] [CrossRef]
- Du, P.; Zhu, X.; Liu, R.; Xie, T.; Yao, X. Analysis on Spatiotemporal Characteristics of Total Column Ozone over China Based on OMI Product, China. Environ. Monit. 2014, 30, 191–196. (In Chinese) [Google Scholar] [CrossRef]
- Ziemke, J.R.; Olsen, M.A.; Witte, J.C.; Douglass, A.R.; Strahan, S.E.; Wargan, K.; Liu, X.; Schoeberl, M.R.; Yang, K.; Kaplan, T.B. Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. J. Geophys. Res. Atmos. 2014, 119, 5671–5699. [Google Scholar] [CrossRef]
- Huang, X.; Shao, T.; Zhao, J.; Cao, J.; Song, Y. Spatio-temporal Differentiation of Ozone Concentration and Its Driving Factors in Yangtze River Delta Urban Agglomeration. Resour. Environ. Yangtze Basin 2019, 28, 1434–1445. (In Chinese) [Google Scholar] [CrossRef]
- Gao, D.; Xie, M.; Chen, X.; Wang, T.J.; Liu, Q.; Zhan, C.C.; Ren, J.Y. Numerical Modeling of Effects of Climate Change on Air Quality in the Yangtze River Delta Region. Equipm. Environ. Eng. 2019, 16, 8. (In Chinese) [Google Scholar]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidevaux, L.; Bhartia, P.K.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 2006, 111, D19303. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, W.; Deng, X.; Yang, J.; Peng, Y. Relationship between absorbing aerosol index and total column ozone. J. Remote Sens. 2017, 21, 9. (In Chinese) [Google Scholar] [CrossRef]
- Bais, A.F.; Zerefos, C.S.; Meleti, C.; Ziomas, I.C.; Tourpali, K. Spectral measurements of solar UVB radiation and its relations to total ozone, SO2, and clouds. J. Geophys. Res. Atmos. 1993, 98, 5199–5204. [Google Scholar] [CrossRef]
- Li, Y.; Lau, A.K.H.; Fung, J.C.H.; Zheng, J.; Liu, S. Importance of NOx control for peak ozone reduction in the Pearl River Delta region. J. Geophys. Res. Atmos. 2013, 118, 9428–9443. [Google Scholar] [CrossRef]
- Qin, Y.; Tonnesen, G.S.; Wang, Z. Weekend/weekday differences of ozone, NOx, Co, VOCs, PM 10 and the light scatter during ozone season in southern California. Atmos. Environ. 2004, 38, 3069–3087. [Google Scholar] [CrossRef]
- Lu, X.; Ye, X.; Zhou, M.; Zhao, Y.; Weng, H.; Kong, H.; Li, K.; Gao, M.; Zheng, B.; Lin, J.; et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat. Commun. 2021, 12, 5021. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Q.; Zhang, J.; Zhang, R.; Zhou, Z. Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment. Atmos. Pollut. Res. 2021, 12, 101053. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, H.; Wang, S.; Wei, Y. Temporal and Spatial Distribution of Ozone in Typical Cities of Yangtze River Delta Region and Its Correlation with Meteorological Factors. J. Atmosp Environ. Opt. 2021, 16, 483–494. (In Chinese) [Google Scholar] [CrossRef]
- Bencherif, H.; Toihir, A.M.; Mbatha, N.; Sivakumar, V.; Preez, D.J.; Bègue, N.; Coetzee, G. Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa. Atmosphere 2020, 11, 1216. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Tchepel, O.; Borrego, C. Frequency analysis of air quality time series for traffic related pollutants. J. Environ. Monit. 2010, 12, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Güler, E.; Özcan, B. PM2.5 Concentration Prediction Based on Winters’ and Fourier Analysis withLeast Squares Methods in Çerkezköy district of Tekirdağ. Int. J. Environ. Pollut. Environ. Modell. 2019, 4, 8–16. [Google Scholar]
Air Temperature | Precipitation | Vapor Pressure | AAI | Total Solar Radiation | |
---|---|---|---|---|---|
Correlation in Temporal Variation | −0.24 | 0.38 | 0.00 | −0.01 | −0.31 |
Correlation in Spatial Distribution | −0.64 | −0.86 | −0.59 | 0.82 | −0.60 |
Delayed Time (in Months) | Air Temperature | Precipitation | Vapor Pressure | AAI | Solar Radiation |
---|---|---|---|---|---|
0 | 0.17 | 0.25 | 0.10 | −0.22 | 0.67 |
1 | −0.25 | 0.01 | −0.27 | 0.11 | 0.35 |
2 | −0.61 | −0.25 | −0.60 | 0.41 | −0.06 |
3 | −0.82 | −0.48 | −0.79 | 0.61 | −0.48 |
4 | −0.79 | −0.60 | −0.76 | 0.67 | −0.77 |
5 | −0.55 | −0.53 | −0.53 | 0.54 | −0.83 |
6 | −0.17 | −0.33 | −0.15 | 0.28 | −0.67 |
Population Size | Regional GDP | Ratio of 1st Industry Value | Ratio of 2nd Industry Value | Ratio of 3rd Industry Value |
---|---|---|---|---|
0.937 ** | 0.710 ** | 0.872 ** | 0.897 ** | 0.832 ** |
Fitting Function | Function Expression | Number of Terms | R2 | SSE | RMSE |
---|---|---|---|---|---|
Polynomial Function | y = −1.04833 × 1015 + 3.13898 × 1012 × x − 3.9162 × 109 × x2 + 2,605,761.52997 × x3 − 975.26491 × x4 + 0.19467 × x51.61909 × 10−5 × x6 | 6 | 0.35 ** | 247.74 | 19.06 |
Trigonometric Function | y = 286.2518 + 7.99065 × sin(pi × (x − 1.24479)/3.14706) | - | 0.26 ** | 281.13 | 17.57 |
Fourier Function | y = 286.6 − 0.5792 × cos(x × 414) − 0.9698 × sin(x × 414) − 0.5071 × cos(2 × x × 414 − 0.8766 × sin(2 × x × 414) − 1.865 × cos(3 × x × 414) + 2.296 × sin(3 × x × 414) + 2.22 × cos(4 × x × 414) − 1.814 × sin(4 × x × 414) + 0.8274 × cos(5 × x × 414) + 0.2748 × sin(5 × x × 414) − 2.574 × cos(6 × x × 414) − 1.754 × sin(6 × x × 414) − 8.4 × cos(7 × x × 414) + 9.747 × sin(7 × x × 414) + 1.663 × cos(8 × x × 414) − 16.5 × sin(8 × x × 0.414) | 8 | 0.99 ** | 3.36 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Wen, Y.; Yang, J.; Yang, L.; Liang, M.; Wen, T.; Cai, S. Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations. Remote Sens. 2022, 14, 4576. https://doi.org/10.3390/rs14184576
Zhou P, Wen Y, Yang J, Yang L, Liang M, Wen T, Cai S. Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations. Remote Sensing. 2022; 14(18):4576. https://doi.org/10.3390/rs14184576
Chicago/Turabian StyleZhou, Peng, Youyue Wen, Jian Yang, Leiku Yang, Minxuan Liang, Tingting Wen, and Shaoman Cai. 2022. "Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations" Remote Sensing 14, no. 18: 4576. https://doi.org/10.3390/rs14184576
APA StyleZhou, P., Wen, Y., Yang, J., Yang, L., Liang, M., Wen, T., & Cai, S. (2022). Spatiotemporal Variation, Driving Mechanism and Predictive Study of Total Column Ozone: A Case Study in the Yangtze River Delta Urban Agglomerations. Remote Sensing, 14(18), 4576. https://doi.org/10.3390/rs14184576