Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas
"> Figure 1
<p>Flowchart of functional-area identification based on POIs and VHR satellite images.</p> "> Figure 2
<p>Spatial unit for identifying the urban functional areas: (<b>a</b>) feature boundaries; (<b>b</b>) road network; (<b>c</b>) spatial unit.</p> "> Figure 3
<p>OpenStreetMap data preprocessing: (<b>a</b>) original OSM data, and (<b>b</b>) final road network after processing.</p> "> Figure 4
<p>(<b>a</b>) High-resolution images from GaoFen-1 (GF-1) covering Futian District; (<b>b</b>) location of Shenzhen in China; (<b>c</b>) POIs of Futian District.</p> "> Figure 5
<p>Point distribution pattern of each type of POI ((<b>a</b>) Residential; (<b>b</b>) Business; (<b>c</b>) Commercial; (<b>d</b>) Administration and Public Services; (<b>e</b>) Green Spaces; (<b>f</b>) Industry).</p> "> Figure 6
<p>Spatial statistics on average-nearest-neighbor indexes and densities of different types of POIs: (<b>a</b>) Business; (<b>b</b>) Commercial; (<b>c</b>) Administrative Office; (<b>d</b>) Residential; (<b>e</b>) Industrial; (<b>f</b>) Street and Transportation; (<b>g</b>) Green Spaces; (<b>h</b>) Education; (<b>i</b>) Medical Health; (<b>j</b>) Sport Facilities; (<b>k</b>) Cultural Media; (<b>l</b>) Research. Left: the normalized density and normalized average-nearest-neighbor indexes; Right: the average-nearest-neighbor index value.</p> "> Figure 7
<p>Result of the identification of single-function zones.</p> "> Figure 8
<p>Distribution of mixed-function zones.</p> "> Figure 9
<p>Distribution of the differences between the maximum value and the second largest value of the functional-intensity ratio of mixed-function areas based on the fixed-threshold method and Grubbs criterion.</p> ">
Abstract
:1. Introduction
2. Materials and Method
2.1. Methods
2.1.1. Spatial Unit Partitioning
2.1.2. Function Intensity
2.1.3. Identification of Urban Functional Areas
2.2. Data Source and Preprocessing
2.2.1. POIs and Urban-Function Classification
2.2.2. OpenStreetMap (OSM) Datasets
2.2.3. Remote-Sensing Images
2.3. Study Area
3. Results
3.1. Spatial Heterogeneity for Each Type of POI
3.2. Functional-Area-Identification Results
3.2.1. Single-Function Area
3.2.2. Mixed-Function Areas
3.3. Accuracy Assessment
4. Discussion
4.1. Effect of Spatial Distribution of POIs on Functional-Area Identification
4.2. Impact of Spatial-Unit Division on Functional-Area Identification
4.3. Adaptive Threshold for Determining Functional Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
90.0% | 95.0% | 97.5% | 99.0% | 99.5% | ||
---|---|---|---|---|---|---|
.N | ||||||
3 | 1.148 | 1.153 | 1.155 | 1.155 | 1.155 | |
4 | 1.425 | 1.463 | 1.481 | 1.492 | 1.496 | |
5 | 1.602 | 1.672 | 1.715 | 1.749 | 1.764 | |
6 | 1.729 | 1.822 | 1.887 | 1.944 | 1.973 | |
7 | 1.828 | 1.938 | 2.020 | 2.097 | 2.139 | |
8 | 1.909 | 2.032 | 2.126 | 2.220 | 2.274 | |
9 | 1.977 | 2.110 | 2.215 | 2.323 | 2.387 | |
10 | 2.036 | 2.176 | 2.290 | 2.410 | 2.482 | |
11 | 2.088 | 2.234 | 2.355 | 2.485 | 2.564 | |
12 | 2.134 | 2.285 | 2.412 | 2.550 | 2.636 | |
13 | 2.175 | 2.331 | 2.462 | 2.607 | 2.699 | |
14 | 2.213 | 2.371 | 2.507 | 2.659 | 2.755 | |
15 | 2.247 | 2.409 | 2.549 | 2.705 | 2.806 | |
16 | 2.279 | 2.443 | 2.585 | 2.747 | 2.852 | |
References
- Pickett, S.T.A.; Cadenasso, M.L.; Rosi-Marshall, E.J.; Belt, K.T.; Groffman, P.M.; Grove, J.M.; Irwin, E.G.; Kaushal, S.S.; LaDeau, S.L.; Nilon, C.H.; et al. Dynamic heterogeneity: A framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 2017, 20, 1–14. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; McGrath, B. (Eds.) Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities; Springer: New York, NY, USA, 2013. [Google Scholar]
- Vanderhaegen, S.; Canters, F. Mapping urban form and function at city block level using spatial metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Pickett, S.T.A.; Cadenasso, M.L. Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landsc. Ecol. 2017, 32, 15–30. [Google Scholar] [CrossRef]
- Shane, D.G. Urban Design since 1945–A Global Perspective; Wiley: Chichester, UK, 2011. [Google Scholar]
- Izzo, S.; Prezioso, E.; Giampaolo, F.; Mele, V.; Somma, V.D.; Mei, G. Classification of urban functional zones through deep learning. Neural Comput. Appl. 2022, 34, 6973–6990. [Google Scholar] [CrossRef]
- Xu, N.; Luo, J.; Wu, T.; Dong, W.; Liu, W.; Zhou, N. Identification and portrait of urban functional zones based on multisource heterogeneous data and ensemble learning. Remote Sens. 2021, 13, 373. [Google Scholar] [CrossRef]
- Song, J.; Lin, T.; Li, X.; Prishchepov, A.V. Mapping urban functional zones by integrating very high spatial resolution remote sensing imagery and points of interest: A case study of Xiamen, China. Remote Sens. 2018, 10, 1737. [Google Scholar] [CrossRef]
- Chen, J.; Turkstra, J.; Peng, M.; Du, N.; Ho, P. Urban land administration and planning in China: Opportunities and constraints of spatial data models. Land Use Policy 2006, 23, 604–616. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Jacquet, W.; Canters, F. Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious surface data. Landsc. Urban Plan. 2011, 102, 143–155. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Kraemer, R. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Arsanjani, J.; Helbich, M.; Bakillah, M.; Hagenauer, J.; Zipf, A. Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 2013, 27, 2264–2278. [Google Scholar] [CrossRef]
- Andrade, R.; Alves, A.; Bento, C. POI mining for land use classification: A case study. ISPRS Int. J. Geo-Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Yeow, L.; Low, R.; Tan, Y.; Cheah, L. Point-of-Interest (POI) Data Validation Methods: An Urban Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 735. [Google Scholar] [CrossRef]
- Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G. Crowdsourcing urban form and function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361–375. [Google Scholar] [CrossRef]
- Montanges, A.P.; Moser, G.; Taubenböck, H.; Wurm, M.; Tuia, D. Classification of urban structural types with multisource data and structured models. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4. [Google Scholar]
- Neis, P.; Zipf, A. Analyzing the contributor activity of a volunteered geographic information project—The case of OpenStreetMap. ISPRS Int. J. Geo-Inf. 2012, 1, 146–165. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S. A linear Dirichlet mixture model for decomposing scenes: Application to analyzing urban functional zonings. Remote Sens. Environ. 2015, 169, 37–49. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Zhang, X.; Wan, Z. Identification of urban functional regions in chengdu based on taxi trajectory time series data. ISPRS Int. J. Geo-Inf. 2020, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.-L.; Li, T.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Luo, A. Detecting urban polycentric structure from POI data. ISPRS Int. J. Geo-Inf. 2019, 8, 283. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Identification of urban functional areas based on POI data: A case study of the Guangzhou economic and technological development zone. Sustainability 2019, 11, 1385. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbour as a Measure of Spatial Relationship in Population. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, J.; Wang, Y.; Wang, L.; Wu, W.; Su, F. A Study on the Method for Functional Classification of Urban Buildings by Using POI Data. J. Geo-Inf. Sci. 2020, 22, 1339–1348. [Google Scholar]
- Zhou, Y.; Jiang, X.; Zhang, M.; Zhang, J.; Sun, H.; Li, X. Modal parameters identification of bridge by improved stochastic subspace identification method with Grubbs criterion. Meas. Control. 2021, 54, 457–464. [Google Scholar] [CrossRef]
- Baidu Maps Open Platform. 2020. Available online: https://lbsyun.baidu.com/index.php?title=%E9%A6%96%E9%A1%B5 (accessed on 4 May 2020).
- Open Street Map. 2020. Available online: https://https://www.openhistoricalmap.org/#map=5/51.440/-0.088&layers=O (accessed on 16 May 2020).
- Shenzhen City Planning and Land Resources Committee. 2020. Available online: http://pnr.sz.gov.cn/ywzy/fdtz/cggbcx/ftq/index.html (accessed on 1 June 2020).
- Liu, K.; Yin, L.; Lu, F.; Mou, N. Visualizing and exploring POI configurations of urban regions on POI-type semantic space. Cities 2020, 99, 102610. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Song, Z.; Lu, J.; Meng, P.; Qin, S. Mapping essential urban land use categories in nanjing by integrating multi-source big data. Remote Sens. 2020, 12, 2386. [Google Scholar] [CrossRef]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Sun, D.; Zhang, J. Identification and analysis of urban functional area in Hangzhou based on OSM and POI data. PLoS ONE 2021, 16, e0251988. [Google Scholar] [CrossRef]
- Lin, A.; Sun, X.; Wu, H.; Luo, W.; Wang, D.; Zhong, D.; Wang, Z.; Zhao, L.; Zhu, J. Identifying Urban Building Function by Integrating Remote Sensing Imagery and POI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8864–8875. [Google Scholar] [CrossRef]
- Agbabiaka, H.I.; Aguda, A.S.; Nzere, R.B. Spatial distribution and proximal model of secondary educational facilities in a traditional Nigerian city. J. Oper. Res. Soc. 2020, 71, 1780–1798. [Google Scholar] [CrossRef]
- Bulti, D.T.; Bedada, T.B.; Diriba, L.G. Analyzing spatial distribution and accessibility of primary schools in Bishoftu Town, Ethiopia. Spat. Inf. Res. 2019, 27, 227–236. [Google Scholar] [CrossRef]
- Ghodousi, M.; Sadeghi-Niaraki, A.; Rabiee, F.; Soo-Mi, C. Spatial-Temporal Analysis of Point Distribution Pattern of Schools Using Spatial Autocorrelation Indices in Bojnourd City. Sustainability 2020, 12, 7755. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.; Liew, S. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Gan, M.; Zhang, J.; Teng, L.; Wang, K.; Shen, Z.; Zhang, L. Discrimination of settlement and industrial area using landscape metrics in rural region. Remote Sens. 2016, 8, 845. [Google Scholar] [CrossRef]
- Baatz, M.; Schape, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angew. Geogr. Inf. 2000, 12, 12–23. [Google Scholar]
- Drâgut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef]
- Pertuz, S.; Garcia, M.A.; Puig, D. Focus-aided scene segmentation. Comput. Vis. Image Underst. 2015, 133, 66–75. [Google Scholar] [CrossRef]
- Luo, S.; Liu, Y.; Du, M.; Gao, S.; Wang, P.; Liu, X. The Influence of Spatial Grid Division on the Layout Analysis of Urban Functional Areas. ISPRS Int. J. Geo-Inf. 2021, 10, 189. [Google Scholar] [CrossRef]
POI Type | Numbers (Pcs) | Proportion (%) | Urban Function Category | |
---|---|---|---|---|
Level I | Level II | |||
Residents; Dormitory; Residential area | 4341 | 16.9 | Residential (R) | - |
Catering; Shopping; Hotel; Barbershop; Recreation; Communications Business Office; Fitness Center | 7187 | 28.1 | Commercial and Business Facilities (C) | Commercial |
Bank; Company; Office Building | 11,389 | 44.5 | Business | |
Library; Museum; Science and Technology Museum; Art Museum; Cultural Place; Theater | 395 | 1.5 | Administration and Public Services (A) | Cultural Media |
Administrative Office | 1468 | 5.7 | Administrative Office | |
Scientific Research Institution | 296 | 1.2 | Research | |
Kindergarten; Elementary School; Secondary School; Colleges | 187 | 0.7 | Education | |
General Hospital; Specialized Hospital; Emergency Center; Disease Control Center; Nursing Home | 30 | 0.1 | Medical Health | |
Gymnasium; Extreme Sports Venues | 17 | 0.1 | Sports Facilities | |
Industrial Park; Factories and Mine | 97 | 0.3 | Industrial (I) | - |
Park; Attraction; Temple; Leisure Plaza | 173 | 0.6 | Green Space (G) | - |
Ports and Terminal; Railway Station; Passenger Station; Toll Station | 24 | 0.1 | Street and Transportation (S) | - |
Mixed-Function Zone | Proportion (%) | |
---|---|---|
RA | 0.17 | 1.12 |
RCB | 3.84 | 25.36 |
RACB | 2.40 | 15.35 |
ACB | 1.74 | 11.49 |
Other | 6.99 | 46.17 |
Level Ⅰ Classes | Reference Data | |||||||
---|---|---|---|---|---|---|---|---|
I | A | M | S | R | G | C | UA | |
M | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1.0 |
A | 0 | 34 | 2 | 0 | 1 | 1 | 1 | 0.87 |
H | 1 | 1 | 53 | 1 | 3 | 0 | 3 | 0.86 |
S | 0 | 1 | 1 | 4 | 0 | 0 | 0 | 0.67 |
R | 0 | 1 | 16 | 0 | 51 | 0 | 0 | 0.75 |
G | 0 | 1 | 2 | 0 | 0 | 20 | 0 | 0.87 |
C | 0 | 0 | 2 | 0 | 0 | 0 | 14 | 0.86 |
Total | 2 | 39 | 76 | 5 | 55 | 21 | 18 | % |
PA | 0.50 | 0.87 | 0.69 | 0.80 | 0.93 | 0.95 | 0.78 |
Method | R | C | S | I | G | A | M | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
M2 | 91.8 | 68.0 | 88.9 | 42.1 | 100 | 80.0 | 50.0 | 100 | 85.7 | 81.8 | 69.2 | 87.1 | 44.7 | 79.1 |
M1 | 92.7 | 75.0 | 77.8 | 87.5 | 80.0 | 66.7 | 50.0 | 50.0 | 95.2 | 87.0 | 87.2 | 87.2 | 69.7 | 85.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Xiao, C.; Rong, L. Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas. Remote Sens. 2022, 14, 4201. https://doi.org/10.3390/rs14174201
Huang C, Xiao C, Rong L. Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas. Remote Sensing. 2022; 14(17):4201. https://doi.org/10.3390/rs14174201
Chicago/Turabian StyleHuang, Chong, Chaoliang Xiao, and Lishan Rong. 2022. "Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas" Remote Sensing 14, no. 17: 4201. https://doi.org/10.3390/rs14174201
APA StyleHuang, C., Xiao, C., & Rong, L. (2022). Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas. Remote Sensing, 14(17), 4201. https://doi.org/10.3390/rs14174201