Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network
"> Figure 1
<p>Location of the study area and the meteorological stations.</p> "> Figure 2
<p>Flowchart of merging multisatellite and gauge precipitation based on the GWR-LSTM framework.</p> "> Figure 3
<p>Diagram of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> matrix data extraction from multisatellite precipitation datasets.</p> "> Figure 4
<p>Illustration of the fusion model based on LSTM for merging multisatellite and gauge precipitation.</p> "> Figure 5
<p>Scatter density plots between the downscaled monthly precipitation by the GWR model and the original satellite monthly precipitation by the GWR model: (<b>a</b>) CMORPH, (<b>b</b>) PERSIANN-CDR, (<b>c</b>) TRMM_3B42, and (<b>d</b>) GPM from 2007 to 2018.</p> "> Figure 6
<p>Scatter density plots between gauge observations and the final MPP generated by the GWR-LSTM framework from 2007 to 2018.</p> "> Figure 7
<p>Spatial daily precipitation estimates from (<b>a</b>) the rain gauge observation, (<b>b</b>) the final MPP with 005° resolution, (<b>c1</b>) the original 0.25° resolution TRMM_3B42, (<b>d1</b>) the downscaled 0.05° resolution TRMM_3B42, (<b>c2</b>) the original 0.25° resolution PERSIANN-CDR, (<b>d2</b>) the downscaled 0.05° resolution PERSIANN-CDR, (<b>c3</b>) the original 0.25° resolution CMORPH, (<b>d3</b>) the downscaled 0.05° resolution CMORPH, (<b>c4</b>) the original 0.1° resolution GPM, (<b>d4</b>) the downscaled 0.05° resolution GPM, on 9 August 2007.</p> "> Figure 8
<p>Time series of average monthly precipitation of gauge observation, original SPPs (TRMM_3B42, CMORPH, PERSIANN-CDR, and GPM), and MPP at the whole basin from 2007 to 2018.</p> "> Figure 9
<p>Taylor diagrams of daily precipitation from the final MPP, the original SPPs (i.e., TRMM, CMORPH, PERSIANN, and GPM), and gauge observations across (<b>a</b>) the whole basin, (<b>b</b>) the upper reaches, (<b>c</b>) the middle reaches, and (<b>d</b>) the lower reaches.</p> "> Figure 10
<p>Evaluation statistics for categorical indices ((<b>a</b>) POD, (<b>b</b>) FAR, (<b>c</b>) BIAS, and (<b>d</b>) ETS) at four precipitation intensity (0.1, 10, 25, and 50 mm/d) classes.</p> "> Figure 11
<p>Spatial distribution of MAE with reference to gauge observations for (<b>a</b>) SMA, (<b>b</b>) BMA, and (<b>c</b>) GWR-LSTM.</p> "> Figure 12
<p>Taylor diagrams for the GWR-LSTM framework proposed in this study and the single-SPP fusion model (Model<sup>T</sup>, Model<sup>C</sup>, Model<sup>P</sup>, and Model<sup>G</sup>) with reference to gauge observations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Downscaling by GWR
2.2.2. Calibration and Validation Dataset Generation
2.2.3. Fusion by LSTM Network
2.2.4. Evaluation Metrics
3. Results
3.1. Merged Precipitation Product (MPP)
3.2. Performance Evaluation of MPP
3.3. Comparisons
3.3.1. Comparison with Other Fusion Models
3.3.2. Comparison with Different Combinations of SPPs
4. Discussion
5. Conclusions
- (1)
- The proposed framework (GWR-LSTM) can significantly improve the spatial resolution and accuracy of precipitation estimates (resolution of 0.05°, CC of 0.86, and KGE of 0.6) over original SPPs (resolution of or , CC of 0.36–0.54, KGE of 0.30–0.52), and this study also demonstrates that the use of merging multiple-satellite and gauges precipitation is much better than merging partial datasets of multiple-satellite precipitation with gauge observations (Table 7).
- (2)
- In the fusion process, the GWR model only downscales for the original SPPs without improving the SPP accuracy, and the accuracy improvement of spatial precipitation estimates is owing to the powerful feature extraction ability of the LSTM network.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, Q.; Chen, J.; Peart, M.R.; Ng, C.N.; Hau, B.C.H.; Law, W.W.Y. Exploration of severities of rainfall and runoff extremes in ungauged catchments: A case study of Lai Chi Wo in Hong Kong, China. Sci. Total Environ. 2018, 634, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y.J.G.; Change, P. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Brodeur, Z.P.; Steinschneider, S. Spatial Bias in Medium-Range Forecasts of Heavy Precipitation in the Sacramento River Basin: Implications for Water Management. J. Hydrometeorol. 2020, 21, 1405–1423. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Liu, J.; Wang, G. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Verdin, A.; Rajagopalan, B.; Kleiber, W.; Funk, C. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resour. Res. 2015, 51, 908–921. [Google Scholar] [CrossRef]
- Lu, D.; Yong, B. Evaluation and Hydrological Utility of the Latest GPM IMERG V5 and GSMaP V7 Precipitation Products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Yang, Z.; Yao, T. Bias correction framework for satellite precipitation products using a rain/no rain discriminative model. Sci. Total Environ. 2022, 818, 151679. [Google Scholar] [CrossRef]
- Bharti, V.; Singh, C. Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region. J. Geophys. Res. Atmos. 2015, 120, 12458–12473. [Google Scholar] [CrossRef]
- Todini, E. A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol. Earth Syst. Sci. 2001, 5, 187–199. [Google Scholar] [CrossRef]
- Seo, D.-J.; Breidenbach, J.P. Real-Time Correction of Spatially Nonuniform Bias in Radar Rainfall Data Using Rain Gauge Measurements. J. Hydrometeorol. 2001, 3, 93–111. [Google Scholar] [CrossRef]
- Thorndahl, S.; Nielsen, J.E.; Rasmussen, M.R. Bias adjustment and advection interpolation of long-term high resolution radar rainfall series. J. Hydrol. 2014, 508, 214–226. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Yan, J.; Bárdossy, A. Short time precipitation estimation using weather radar and surface observations: With rainfall displacement information integrated in a stochastic manner. J. Hydrol. 2019, 574, 672–682. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for merging satellite and gauge precipitation. J. Hydrol. 2018, 558, 275–289. [Google Scholar] [CrossRef]
- Miao, Q.; Pan, B.; Wang, H.; Hsu, K.; Sorooshian, S. Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network. Water 2019, 11, 977. [Google Scholar] [CrossRef]
- Kumar, A.; Ramsankaran, R.; Brocca, L.; Munoz-Arriola, F. A Machine Learning Approach for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture. Remote Sens. 2019, 11, 2221. [Google Scholar] [CrossRef]
- Chen, S.; Xiong, L.; Ma, Q.; Kim, J.-S.; Chen, J.; Xu, C.-Y. Improving daily spatial precipitation estimates by merging gauge observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method. J. Hydrol. 2020, 589, 125156. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ge, Y. Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. J. Hydrol. 2021, 594, 125969. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 287–296. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 36, 1176–1190. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, Z. Application of a Dynamic Clustered Bayesian Model Averaging (DCBA) Algorithm for Merging Multisatellite Precipitation Products over Pakistan. J. Hydrometeorol. 2020, 21, 17–37. [Google Scholar] [CrossRef]
- Rahman, K.; Shang, S.; Shahid, M.; Li, J. Developing an Ensemble Precipitation Algorithm from Satellite Products and Its Topographical and Seasonal Evaluations Over Pakistan. Remote Sens. 2018, 10, 1835. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.; Yang, C.; Yuan, Y.; Tang, G.; Yao, Y.; Di, L.; Li, C.; Han, Z.; Liu, R. Performance of Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Chen, H.; Hu, N.; Cheng, Z.; Zhang, L.; Zhang, Y. A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes. Measurement 2019, 146, 268–278. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, Y.; Luan, X.; Xin, Z. Multi-source heterogeneous data fusion. In Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–28 May 2018. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Zhai, J.; Dong, G.; Chen, F.; Xie, X.; Qi, C.; Li, L. A Deep Learning Fusion Recognition Method Based On SAR Image Data. Procedia Comput. Sci. 2019, 147, 533–541. [Google Scholar]
- Saleh, K.; Hossny, M.; Nahavandi, S. Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017. [Google Scholar]
- Yang, F.; Zhu, J.; Wang, X.; Wu, X.; Tang, Y.; Luo, L. A Multi-model Fusion Framework based on Deep Learning for Sentiment Classification. In Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)), Nanjing, China, 9–11 May 2018; pp. 433–437. [Google Scholar]
- Liu, P.; Zhang, Y.; Bao, F.; Yao, X.; Zhang, C. Multi-type data fusion framework based on deep reinforcement learning for algorithmic trading. Appl. Intell. 2022. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Y.; Wang, Y.; Qin, F.; Li, X. Downscaling satellite-derived daily precipitation products with an integrated framework. Int. J. Climatol. 2019, 39, 1287–1304. [Google Scholar] [CrossRef]
- Box, G.; Cox, D. An analysis of transformations. J. Roy. Stat. Soc. 1964, 26A, 211–252. [Google Scholar] [CrossRef]
- Erdin, R.; Frei, C.; Kunsch, H.R. Data Transformation and Uncertainty in Geostatistical Combination of Radar and Rain Gauges. J. Hydrometeorol. 2012, 13, 1332–1346. [Google Scholar] [CrossRef]
- Kim, M.; Hill, R.C. The Box-Cox transformation-of-variables in regression. Empir. Econ. 1993, 18, 307–319. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
Products | Version | Temporal Resolution | Spatial Resolution | Range | Download URL |
---|---|---|---|---|---|
GPM IMERG | V06B | Daily | 90°N–90°S | https://gpm.nasa.gov/ (accessed on 25 May 2022) | |
TRMM | 3B42V7 | Daily | 50°N–50°S | https://gpm.nasa.gov/ (accessed on 25 May 2022) | |
CMORPH | V1.0 | Daily | 60°N–60°S | https://ftp.cpc.ncep.noaa.gov/ (accessed on 25 May 2022) | |
PERSIANN-CDR | V1.0 | Daily | 60°N–60°S | https://www.ncei.noaa.gov (accessed on 25 May 2022) |
Metrics | Unit | Equation | Ideal Value |
---|---|---|---|
CC | - | 1 | |
RMSE | mm/d | 0 | |
MAE | mm/d | 0 | |
KGE | - | 1 | |
POD | - | 1 | |
FAR | - | 0 | |
BIAS | - | 1 | |
ETS | - | 1 |
Name | CC | MAE (mm/d) | RMSE (mm/d) | KGE | |
---|---|---|---|---|---|
Original | TRMM | 0.39 | 3.13 | 9.18 | 0.39 |
PERSIANN | 0.36 | 3.38 | 8.56 | 0.30 | |
CMORPH | 0.54 | 2.51 | 7.64 | 0.52 | |
GPM | 0.46 | 3.02 | 8.89 | 0.45 | |
Downscaled | TRMM | 0.41 | 3.07 | 8.93 | 0.40 |
PERSIANN | 0.37 | 3.36 | 8.50 | 0.30 | |
CMORPH | 0.55 | 2.48 | 7.54 | 0.51 | |
GPM | 0.46 | 2.99 | 8.76 | 0.45 | |
MPP | 0.86 | 1.26 | 4.55 | 0.60 |
Period | Metrics | TRMM | PERSIANN | CMORPH | GPM | MPP |
---|---|---|---|---|---|---|
Entire | CC | 0.39 | 0.36 | 0.54 | 0.46 | 0.86 |
MAE (mm/d) | 3.13 | 3.38 | 2.51 | 3.02 | 1.26 | |
RMSE (mm/d) | 9.18 | 8.56 | 7.64 | 8.89 | 4.55 | |
KGE | 0.39 | 0.30 | 0.52 | 0.45 | 0.60 | |
Spring | CC | 0.35 | 0.33 | 0.53 | 0.41 | 0.86 |
MAE (mm/d) | 3.19 | 3.47 | 2.46 | 3.11 | 1.20 | |
RMSE (mm/d) | 8.51 | 7.43 | 6.75 | 8.26 | 3.84 | |
KGE | 0.34 | 0.25 | 0.52 | 0.38 | 0.62 | |
Summer | CC | 0.37 | 0.31 | 0.50 | 0.43 | 0.85 |
MAE (mm/d) | 5.67 | 6.00 | 4.78 | 5.31 | 2.29 | |
RMSE (mm/d) | 13.84 | 13.37 | 11.97 | 13.39 | 7.23 | |
KGE | 0.35 | 0.24 | 0.46 | 0.43 | 0.57 | |
Autumn | CC | 0.44 | 0.44 | 0.61 | 0.50 | 0.87 |
MAE (mm/d) | 2.95 | 3.10 | 2.26 | 2.90 | 1.20 | |
RMSE (mm/d) | 8.06 | 7.27 | 6.34 | 7.72 | 3.74 | |
KGE | 0.44 | 0.41 | 0.60 | 0.47 | 0.67 | |
Winter | CC | 0.29 | 0.28 | 0.57 | 0.42 | 0.80 |
MAE (mm/d) | 0.66 | 0.91 | 0.48 | 0.72 | 0.32 | |
RMSE (mm/d) | 2.62 | 2.23 | 1.76 | 2.67 | 1.16 | |
KGE | 0.19 | 0.09 | 0.57 | 0.18 | 0.44 |
Regions | Metrics | TRMM | PERSIANN | CMORPH | GPM | MPP |
---|---|---|---|---|---|---|
Whole | CC | 0.39 | 0.36 | 0.54 | 0.46 | 0.86 |
MAE (mm/d) | 3.13 | 3.38 | 2.51 | 3.02 | 1.26 | |
RMSE (mm/d) | 9.18 | 8.56 | 7.64 | 8.89 | 4.55 | |
KGE | 0.39 | 0.30 | 0.52 | 0.45 | 0.60 | |
Upper reaches | CC | 0.41 | 0.39 | 0.57 | 0.49 | 0.84 |
MAE (mm/d) | 3.09 | 3.21 | 2.48 | 2.79 | 1.32 | |
RMSE (mm/d) | 8.66 | 7.96 | 7.10 | 7.93 | 4.49 | |
KGE | 0.41 | 0.33 | 0.55 | 0.48 | 0.57 | |
Middle reaches | CC | 0.38 | 0.32 | 0.51 | 0.43 | 0.84 |
MAE (mm/d) | 2.90 | 3.25 | 2.34 | 2.81 | 1.16 | |
RMSE (mm/d) | 8.58 | 8.24 | 7.33 | 8.41 | 4.41 | |
KGE | 0.37 | 0.26 | 0.48 | 0.42 | 0.58 | |
Lower reaches | CC | 0.39 | 0.39 | 0.57 | 0.47 | 0.9 |
MAE (mm/d) | 3.91 | 4.20 | 3.04 | 4.25 | 1.39 | |
RMSE (mm/d) | 11.88 | 10.75 | 9.60 | 12.09 | 5.03 | |
KGE | 0.39 | 0.31 | 0.53 | 0.35 | 0.69 |
Regions | Metrics | SMA | GWRR | GWR-LSTM |
---|---|---|---|---|
Whole | CC | 0.50 | 0.83 | 0.86 |
MAE (mm/d) | 2.80 | 1.37 | 1.26 | |
RMSE (mm/d) | 7.75 | 4.85 | 4.55 | |
KGE | 0.45 | 0.61 | 0.60 | |
Upper reaches | CC | 0.53 | 0.85 | 0.84 |
MAE (mm/d) | 2.69 | 1.34 | 1.32 | |
RMSE (mm/d) | 7.12 | 4.47 | 4.49 | |
KGE | 0.47 | 0.62 | 0.57 | |
Middle reaches | CC | 0.47 | 0.84 | 0.84 |
MAE (mm/d) | 2.63 | 1.23 | 1.16 | |
RMSE (mm/d) | 7.36 | 4.65 | 4.41 | |
KGE | 0.41 | 0.61 | 0.58 | |
Lower reaches | CC | 0.51 | 0.77 | 0.90 |
MAE (mm/d) | 3.59 | 2.08 | 1.39 | |
RMSE (mm/d) | 10.07 | 6.25 | 5.03 | |
KGE | 0.46 | 0.59 | 0.69 |
Model | CC | MAE | RMSE | KGE |
---|---|---|---|---|
ModelTC | 0.80 | 1.54 | 5.32 | 0.47 |
ModelTP | 0.76 | 1.70 | 5.77 | 0.35 |
ModelTG | 0.75 | 1.75 | 5.89 | 0.32 |
ModelCP | 0.82 | 1.44 | 5.03 | 0.55 |
ModelCG | 0.82 | 1.47 | 5.04 | 0.55 |
ModelPG | 0.75 | 1.72 | 5.86 | 0.39 |
ModelTCP | 0.84 | 1.34 | 4.75 | 0.60 |
ModelTCG | 0.83 | 1.40 | 4.88 | 0.56 |
ModelCPG | 0.84 | 1.36 | 4.72 | 0.60 |
ModelTCPG | 0.86 | 1.26 | 4.55 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Liu, P.; Xia, J.; Zhao, Y.; Dong, Y. Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network. Remote Sens. 2022, 14, 3939. https://doi.org/10.3390/rs14163939
Shen J, Liu P, Xia J, Zhao Y, Dong Y. Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network. Remote Sensing. 2022; 14(16):3939. https://doi.org/10.3390/rs14163939
Chicago/Turabian StyleShen, Jianming, Po Liu, Jun Xia, Yanjun Zhao, and Yi Dong. 2022. "Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network" Remote Sensing 14, no. 16: 3939. https://doi.org/10.3390/rs14163939
APA StyleShen, J., Liu, P., Xia, J., Zhao, Y., & Dong, Y. (2022). Merging Multisatellite and Gauge Precipitation Based on Geographically Weighted Regression and Long Short-Term Memory Network. Remote Sensing, 14(16), 3939. https://doi.org/10.3390/rs14163939