Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block
<p>Flow chart of the proposed algorithm.</p> "> Figure 2
<p>The scatter and classification threshold of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> </mrow> </semantics></math> from San Francisco.</p> "> Figure 3
<p>The illustration of the pseudo-color rule.</p> "> Figure 4
<p>San Francisco data. (<b>a</b>) PauliRGB image. (<b>b</b>) Google Earth image. (<b>c</b>) Ground truth based on [<a href="#B29-remotesensing-14-03953" class="html-bibr">29</a>]. (<b>d</b>) Ground truth based on [<a href="#B30-remotesensing-14-03953" class="html-bibr">30</a>].</p> "> Figure 5
<p>Oberpfaffenhofen data. (<b>a</b>) PauliRGB image. (<b>b</b>) Google Earth image. (<b>c</b>) Ground truth based on [<a href="#B30-remotesensing-14-03953" class="html-bibr">30</a>]. (<b>d</b>) Ground truth based on [<a href="#B31-remotesensing-14-03953" class="html-bibr">31</a>].</p> "> Figure 6
<p>Tianjin Airport data. (<b>a</b>) PauliRGB image. (<b>b</b>) Google Earth image.</p> "> Figure 7
<p>Classification results of San Francisco with different class numbers. (<b>a</b>) Initial results with PCST. (<b>b</b>) Initial results with “label2rgb”. (<b>c</b>) Result after optimization with PCST. (<b>d</b>) Result after optimization with “label2rgb”. (<b>e</b>) Result of 3 classes with PCST. (<b>f</b>) Result of 3 classes with “label2rgb”. (<b>g</b>) Result of 5 classes with PCST. (<b>h</b>) Result of 5 classes with “label2rgb”. (<b>i</b>) Result of 7 classes with PCST. (<b>j</b>) Result of 7 classes with “label2rgb”. (<b>k</b>) Result of 9 classes with PCST. (<b>l</b>) Result of 9 classes with “label2rgb”.</p> "> Figure 8
<p>The relative change rate of the whole image and image blocks.</p> "> Figure 9
<p>Classification results with different block sizes. (<b>a</b>) Result with block size as 75. (<b>b</b>) Result with block size as 90. (<b>c</b>) Result with block size as 113.</p> "> Figure 10
<p>Classification results with different adjacent parameters. (<b>a</b>) Result with adjacent parameter 0.25. (<b>b</b>) Result with adjacent parameter 0.5. (<b>c</b>) Result with adjacent parameter 0.75. (<b>d</b>) Result with adjacent parameter 1.00.</p> "> Figure 11
<p>Classification results with different distance thresholds. (<b>a</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>b</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.0</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>c</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>2.0</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure 12
<p>Classification results of different algorithms and class numbers. (<b>a</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>b</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>c</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>d</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>e</b>) Result of the proposed with 16 classes. (<b>f</b>) Result of the proposed with 5 classes.</p> "> Figure A1
<p>Classification results of Oberpfaffenhofen with different class numbers. (<b>a</b>) Initial results with PCST. (<b>b</b>) Initial results with “label2rgb”. (<b>c</b>) Result after optimization with PCST. (<b>d</b>) Result after optimization with “label2rgb”. (<b>e</b>) Result of 3 classes with PCST. (<b>f</b>) Result of 3 classes with “label2rgb”. (<b>g</b>) Result of 5 classes with PCST. (<b>h</b>) Result of 5 classes with “label2rgb”. (<b>i</b>) Result of 7 classes with PCST. (<b>j</b>) Result of 7 classes with “label2rgb”. (<b>k</b>) Result of 9 classes with PCST. (<b>l</b>) Result of 9 classes with “label2rgb”.</p> "> Figure A2
<p>The relative change rate of the whole image and image blocks.</p> "> Figure A3
<p>Classification results with different block sizes. (<b>a</b>) Result with block size as 100. (<b>b</b>) Result with block size as 120. (<b>c</b>) Result with block size as 150.</p> "> Figure A4
<p>Classification results with different adjacent parameters. (<b>a</b>) Result with adjacent parameter 0.25. (<b>b</b>) Result with adjacent parameter 0.5. (<b>c</b>) Result with adjacent parameter 0.75. (<b>d</b>) Result with adjacent parameter 1.00.</p> "> Figure A5
<p>Classification results with different distance thresholds. (<b>a</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>b</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.0</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>c</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>2.0</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure A6
<p>Classification results of different algorithms and class numbers. (<b>a</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>b</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>c</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>d</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>e</b>) Result of the proposed with 16 classes. (<b>f</b>) Result of the proposed with 5 classes.</p> "> Figure A7
<p>Classification results of Tianjin Airport with different class numbers. (<b>a</b>) Initial results with PCST. (<b>b</b>) Initial results with “label2rgb”. (<b>c</b>) Result after optimization with PCST. (<b>d</b>) Result after optimization with “label2rgb”. (<b>e</b>) Result of 3 classes with PCST. (<b>f</b>) Result of 3 classes with “label2rgb”. (<b>g</b>) Result of 5 classes with PCST. (<b>h</b>) Result of 5 classes with “label2rgb”. (<b>i</b>) Result of 7 classes with PCST. (<b>j</b>) Result of 7 classes with “label2rgb”. (<b>k</b>) Result of 9 classes with PCST. (<b>l</b>) Result of 9 classes with “label2rgb”.</p> "> Figure A8
<p>The relative change rate of the whole image and image blocks.</p> "> Figure A9
<p>Classification results with different block sizes. (<b>a</b>) Result with block size as 67. (<b>b</b>) Result with block size as 80. (<b>c</b>) Result with block size as 100.</p> "> Figure A10
<p>Classification results with different adjacent parameters. (<b>a</b>) Result with adjacent parameter 0.25. (<b>b</b>) Result with adjacent parameter 0.5. (<b>c</b>) Result with adjacent parameter 0.75. (<b>d</b>) Result with adjacent parameter 1.00.</p> "> Figure A11
<p>Classification results with different distance thresholds. (<b>a</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>b</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.0</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>c</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>1.5</mn> <mo>%</mo> </mrow> </semantics></math>. (<b>d</b>) Result with distance threshold <math display="inline"><semantics> <mrow> <mn>2.0</mn> <mo>%</mo> </mrow> </semantics></math>.</p> "> Figure A12
<p>Classification results of different algorithms and class numbers. (<b>a</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>b</b>) Result of <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>/</mo> <mi>α</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>c</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 16 classes. (<b>d</b>) Result of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>/</mo> <mi>q</mi> <mo>/</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>y</mi> </mrow> </semantics></math>-Wishart with 5 classes. (<b>e</b>) Result of the proposed with 16 classes. (<b>f</b>) Result of the proposed with 5 classes.</p> ">
Abstract
:1. Introduction
- The algorithm has a hierarchical structure, and the classification is applied in the final stage of object merging. Therefore, the algorithm can obtain classifications with different fineness without significantly increasing the amount of computation.
- DPC has the characteristics of few parameters and strong robustness and can organize the merging relationship of objects as a tree, which effectively ensures the classification effect of the algorithm under different class numbers.
- The object generation of the algorithm is carried out in non-overlapping image blocks, which can be implemented in parallel in practical applications to ensure the efficiency of the algorithm.
- Each cluster obtained from the image blocks is regarded as an object, which greatly reduces the dimension of the affinity matrix, ensures the realizability of DPC, and also, reduces the number of objects processed by classification.
- Classification of image blocks is implemented by -Wishart classification, which has the characteristics of a clear physical meaning and simple calculation. Moreover, the convergence speed of the Wishart iteration is improved by simplifying the image classification contents.
- If the Earth is taken as the global image, the usual large images belong to the image blocks, and all the unsupervised classification faces the problem of object merging. Therefore, the structure of the algorithm in this paper is of universal significance and can be applied to images of larger scenes through multi-layer settings.
2. Methodology
2.1. PolSAR Data
2.2. Decomposition
2.3. Log-Euclidean Riemannian Metric
2.4. DPC
2.5. Proposed Method
- Pre-processing of filtering: Speckle noise is common in PolSAR images, which has a serious impact on image interpretation. Therefore, speckle filtering is usually an essential pre-processing step in image interpretation. In order to facilitate the classification comparison of other algorithms, the refined Lee filter [27] was selected here. In practice, other algorithms with better filtering effects can be used.
- Segmenting the image into blocks: The images to be classified are divided into multiple non-overlapping image blocks. This step involves image block size S.
- Classification within image blocks: According to the polarimetric coherence matrix , the parameters can be calculated by Formula (6), and the gray image can be obtained from the PauliRGB image. Similar to [10], PolSAR images can be divided into 8 categories by according to threshold values, as shown in Figure 2. In order to distinguish terrain with the same scattering mechanism, but different scattering powers, OTSU [28] was used to subdivide each cluster into 2 categories according to the gray feature. Therefore, a maximum of 16 clusters (objects) can be obtained in each image block. This step involves the optimization parameter of Wishart classifier iteration I.
- Calculating affinity matrix between objects: The arithmetic mean of all pixels is used as the representation of the object (the principle is similar to multi-look processing, such as Formula (3)), and the similarity between objects is measured by the LERM as Formula (7). It is easy to know that the dimension of the affinity matrix depends on the parameter of S and the complexity of image contents. Therefore, the dimension of the affinity matrix can always be kept within acceptable computation by adjusting S.
- Merging objects based on DPC: the local density and sample distance of each object can be calculated according to Formula (8) and Formula (9), respectively; the merging relationship between objects can be determined according to the principle that non-cluster center samples are divided into sample clusters with a higher density and the closest distance. is taken as the index of the object to become the center of the class. The N objects with the largest index are selected as the initial cluster center, and object merging can be completed gradually. This step involves distance threshold and class number N.
- Forcibly merging of adjacent objects at the image block boundary: The image is artificially segmented, which rarely corresponds to the real boundary of the terrain, and the two adjacent objects at the image block boundary usually belong to the same terrain. Therefore, the algorithm calculates the adjacency object pairs located at the image block boundary and assigns the object pairs whose adjacency degree is greater than the preset threshold to the same label. This step involves the adjacency parameter R (expressed as the ratio of the number of adjacent pixels to the size of the image block).
3. Experiments
3.1. Data Introduction
3.2. Parameter Analysis
3.2.1. Class Number N
3.2.2. Optimization Stopping Parameter I
3.2.3. Image Block Size S
3.2.4. Adjacency Parameter R
3.2.5. Distance Threshold
3.3. Classification Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Nie, X.L.; Huang, X.Y.; Zhang, B.; Qiao, H. Review on PolSAR Image Speckle Reduction and Classification Methods. Acta Autom. Sin. 2019, 45, 1419–1438. [Google Scholar]
- Kong, J.; Swartz, A.A.; Yueh, H.A.; Novak, L.M.; Shin, R.T. Identification of Terrain Cover using the Optimum Polarimetric Classifier. J. Electromagnet. Wave 1988, 2, 171–194. [Google Scholar]
- Lee, J.S.; Grunes, M.R.; Kwok, R. Classification of Multi-look Polarimetric SAR Imagery based on Complex Wishart Distribution. Int. J. Remote Sens. 1994, 15, 2299–2311. [Google Scholar] [CrossRef]
- Fukuda, S.; Hirosawa, H. Support Vector Machine Classification of Land Cover: Application to Polarimetric SAR Data. In Proceedings of the 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001. [Google Scholar]
- Zou, T.Y.; Yang, W.; Dai, D.X.; Sun, H. Polarimetric SAR Image Classification using Multifeatures Combination and Extremely Randomized Clustering Forests. EURASIP J. Adv. Signal Process. 2009, 2010, 465612. [Google Scholar] [CrossRef]
- Gao, F.; Huang, T.; Wang, J.; Sun, J.P.; Hussain, A.; Yang, E. Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification. Appl. Sci. 2017, 7, 447. [Google Scholar] [CrossRef]
- Xie, W.; Jiao, L.C.; Hou, B.; Ma, W.P.; Zhao, J.; Zhang, S.Y.; Liu, F. PolSAR Image Classification via Wishart-AE Model or Wishart-CAE Model. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3604–3615. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wang, H.P.; Xu, F.; Jin, Y.Q. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Oveis, A.H.; Giusti, E.; Ghio, S.; Martorella, M. A Survey on the Applications of Convolutional Neural Networks for Synthetic Aperture Radar: Recent Advances. IEEE Aero. El. Sys. Mag. 2022, 37, 18–42. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An Entropy based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Chen, Q.; Kuang, G.Y.; Li, J.; Sui, L.C.; Li, D.G. Unsupervised Land Cover/Land Use Classification Using PolSAR Imagery Based on Scattering Similarity. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1817–1825. [Google Scholar] [CrossRef]
- Lee, J.S.; Grune, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised Classification using Polarimetric Decomposition and the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar]
- Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. [Google Scholar]
- Kersten, P.R.; Lee, J.S.; Ainsworth, T.L. Unsupervised Classification of Polarimetric Synthetic Aperture Radar Images using Fuzzy Clustering and EM Clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [Google Scholar] [CrossRef]
- Ersahin, K.; Cumming, I.G.; Ward, R.K. Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 164–174. [Google Scholar] [CrossRef]
- Yu, P.; Qin, A.K.; Clausi, D.A. Unsupervised Polarimetric SAR Image Segmentation and Classification Using Region Growing With Edge Penalty. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1302–1317. [Google Scholar] [CrossRef]
- Doulgeris, A.P. An Automatic U-Distribution and Markov Random Field Segmentation Algorithm for PolSAR Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1819–1827. [Google Scholar] [CrossRef]
- Bi, H.X.; Sun, J.; Xu, Z.B. Unsupervised PolSAR Image Classification Using Discriminative Clustering. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3531–3544. [Google Scholar] [CrossRef]
- Song, W.Y.; Li, M.; Zhang, P.; Wu, Y.; Jia, L.; An, L. Unsupervised PolSAR Image Classification and Segmentation Using Dirichlet Process Mixture Model and Markov Random Fields with Similarity Measure. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3556–3568. [Google Scholar] [CrossRef]
- Cao, F.; Hong, W.; Wu, Y.R.; Pottier, E. An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/α/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3454–3467. [Google Scholar] [CrossRef]
- Mohammed, D.; Michael, J.C.; Vassilia, K.; Alexander, B. An Unsupervised Classification Approach for Polarimetric SAR Data Based on the Chernoff Distance for Complex Wishart Distribution. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4200–4213. [Google Scholar]
- Pottier, E.; Lee, J.S. Application of the «H/A/α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution. In Proceedings of the 2000 SAR Workshop: CEOS Committee on Earth Observation Satellites; Working Group on Calibration and Validation, Toulouse, France, 26–29 October 1999. [Google Scholar]
- An, W.T.; Cui, Y.; Yang, J.; Zhang, H.J. Fast Alternatives to H/α for Polarimetric SAR. IEEE Geosci. Remote Sens. Lett. 2010, 7, 343–347. [Google Scholar]
- Barbaresco, F. Interactions Between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery. Emerg. Trends Vis. Comput. 2008, 5416, 124–163. [Google Scholar]
- Arsigny, V.; Fillard, P.; Pennec, X.; Ayache, N. Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors. Magn. Reson. Med. 2006, 56, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Liao, A. Clustering by Fast Search and Find of Density Peaks. Science 2014, 344, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Grunes, M.R.; Grandi, G.D. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2363–2373. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Xiao, D.L.; Liu, C.; Wang, Q.; Wang, C.; Zhang, X. PolSAR Image Classification Based on Dilated Convolution and Pixel-Refining Parallel Mapping network in the Complex Domain. arXiv 2020, arXiv:1909.10783v2. [Google Scholar]
- Nie, X.L.; Ding, S.G.; Huang, X.Y.; Qiao, H.; Zhang, B.; Jiang, Z.P. An Online Multiview Learning Algorithm for PolSAR Data Real-Time Classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 302–320. [Google Scholar] [CrossRef]
- Guo, Y.W.; Jiao, L.C.; Wang, S.; Wang, S.; Liu, F.; Hua, W.Q. Fuzzy Superpixels for Polarimetric SAR Images Classification. IEEE Trans. Fuzzy Sys. 2018, 26, 2846–2860. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Han, P.; Cheng, Z. Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block. Remote Sens. 2022, 14, 3953. https://doi.org/10.3390/rs14163953
Han B, Han P, Cheng Z. Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block. Remote Sensing. 2022; 14(16):3953. https://doi.org/10.3390/rs14163953
Chicago/Turabian StyleHan, Binbin, Ping Han, and Zheng Cheng. 2022. "Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block" Remote Sensing 14, no. 16: 3953. https://doi.org/10.3390/rs14163953
APA StyleHan, B., Han, P., & Cheng, Z. (2022). Object-Oriented Unsupervised Classification of PolSAR Images Based on Image Block. Remote Sensing, 14(16), 3953. https://doi.org/10.3390/rs14163953