A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data
"> Figure 1
<p>Feature importance values of the hyperspectral data <span class="html-italic">Indian</span>, <span class="html-italic">University</span> and <span class="html-italic">Salinas</span>.</p> "> Figure 2
<p>Flowchart of the double ensemble-based multi-class imbalanced data learning method.</p> "> Figure 3
<p>Ground truth, classification maps of Adaboost, Bagging, random forest, random undersampling combined, random oversampling combined Adaboost, Bagging, and random forest, and the proposed double random forest DRF, on the hyperspectral data <span class="html-italic">Salinas</span>.</p> "> Figure 4
<p>Ground truth, classification maps of Adaboost, Bagging, random forest, random undersampling combined, random oversampling combined Adaboost, Bagging, and random forest, and the proposed double random forest DRF, on the hyperspectral data <span class="html-italic">University</span>.</p> "> Figure 5
<p>Ground truth, classification maps of Adaboost, Bagging, random forest, random undersampling combined, random oversampling combined Adaboost, Bagging, and random forest, and the proposed double random forest DRF, on the hyperspectral data <span class="html-italic">Salinas</span>.</p> "> Figure 6
<p>Performances of the proposed method measured by <math display="inline"><semantics> <mrow> <mi>O</mi> <mi>A</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>A</mi> </mrow> </semantics></math>, <span class="html-italic">F</span>—<math display="inline"><semantics> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>s</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> </mrow> </semantics></math> and <span class="html-italic">G</span>—<math display="inline"><semantics> <mrow> <mi>m</mi> <mi>e</mi> <mi>a</mi> <mi>n</mi> </mrow> </semantics></math> with respect to the number of features on hyperspectral data sets <span class="html-italic">University</span> and <span class="html-italic">Salinas.</span></p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Feature-Level Methods
2.2. Data-Level Methods
2.3. Algorithm-Level Methods
2.4. Ensemble-Based Imbalance Learning Methods
2.4.1. Adaboost
Algorithm 1 Adaboost |
Input: Data set ; Base learning algorithm ; Number of learning rounds T; Initialization: . Iterative process: for to T do 1. ; 2. ; 3. if then break 4. ; 5. Update: end Output: |
2.4.2. Bagging
Algorithm 2 Bagging |
Input: Data set ; Base learning algorithm ; Number of learning rounds T; Iterative process: for to T do ; end Output: |
2.4.3. Random Forest
2.4.4. Ensemble-Based Methods
3. Proposed Method
3.1. Feature Importance Determining Based on Random Forest
Algorithm 3 Oversampling-based double random forest methods. |
Inputs:
Process:
End |
Output: The ensemble E |
3.2. Over-Sampling Based Double Ensemble Methods
4. Experimental Study
4.1. Evaluative Performance Metrics
- Overall accuracy(OA) measures the true prediction rate.
- Average accuracy(AA) gives the same weight to each of the classes of the problem. It can be calculated according to the following equation:
- F-Measure is one of the most popular methods to evaluate the performance of a classifier for imbalance data. It can be calculated according to the following equation.
- G-mean is another method to evaluate the performance of a classifier for imbalance data.
4.2. Data Information
- (1)
- Indian Pines AVRIS is highly imbalanced and composed of 145 × 145 pixels, with a spatial resolution of 20 m/pixel and 200 spectral bands. The reference data with 16 classes are composed of 10,249 samples.
- (2)
- University of Pavia ROSIS consists of 610 × 340 pixels, and 103 spectral bands. The spatial resolution of this data is 1.3 m/pixel. The reference data is with 9 classes and is composed of 42,776 instances.
- (3)
- Salinas consists of 512 × 217 pixels with a spatial resolution of 3.7 m/pixel. The data has 224 spectral bands. The reference data is with 16 classes and is composed of 54,129 instances.
4.3. Results and Analysis
- 1
- Present the performance of DRF in dealing with the hyperspectral datasets.
- 2
- Compare the performance of DRF with data sampling methods.
- 3
- Analyze the parameter sensitivity of the proposed DRF methods.
4.4. Parameter Analysis
5. Discussion
- 1
- The proposed algorithm is effective for multi-class imbalanced hyperspectral remote sensing data. It could increase the robustness of the ensemble method to skewed distributions. Out of the examined methods, the proposed ensemble method, when combined with different information about instance-level difficulties, offers the best performance regardless of the used metric. The standard version of random forest is considered unsuitable for class imbalanced hyperspectral remote sensing data, as it underperformed when compared with random resampling methods.
- 2
- By analyzing the behaviors of single random undersampling or oversampling, we are able to identify the weak spot of the data level methods. As data in each base classifier is selected randomly, resampling performs locally correct oversampling that does not translate to the global characteristics of data. This could lead to increased overlapping among classes. Our proposed method used both feature selection and data sampling. This eliminated the drawbacks of single data resampling in the high dimensional data processing.
- 3
- The analysis of instance-level difficulties in multi-class imbalanced data allowed for a better understanding of each considered classification problem [17]. This paper adopts two popular data resampling methods and focuses on enhancing the presence of the most difficult instances. Although this could lead to improvements for the traditional random forest algorithm, the operation is unsuitable for hyperspectral remote sensing data.
- 4
- In our experiments, we analyzed the effect of feature parameters with the double ensemble algorithm. The results show that the proposed method is insensitive to the number of features. That means the proposed method has a good generalization ability.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification with Convolutional Neural Network and Active Learning. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wu, C.; Du, B.; Zhang, L. Enhanced Multiscale Feature Fusion Network for HSI Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10328–10347. [Google Scholar] [CrossRef]
- Feng, W.; Huang, W.; Ren, J. Class Imbalance Ensemble Learning Based on the Margin Theory. Appl. Sci. 2018, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised Spectral-patial Feature Learning with Stacked Sparse Autoencoder for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438–2442. [Google Scholar] [CrossRef]
- He, Z.; Liu, H.; Wang, Y.; Hu, J. Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification. Remote Sens. 2017, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Garcia, S.; Zhang, Z.; Altalhi, A.; Alshomrani, S.; Herrera, F. Dynamic ensemble selection for multi-class imbalanced datasets. Inf. Sci. 2018, 445-446, 22–37. [Google Scholar] [CrossRef]
- Sun, T.; Jiao, L.; Feng, J.; Liu, F.; Zhang, X. Imbalanced Hyperspectral Image Classification Based on Maximum Margin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 522–526. [Google Scholar] [CrossRef]
- Feng, W.; Huang, W.; Bao, W. Imbalanced Hyperspectral Image Classification with an Adaptive Ensemble Method Based on SMOTE and Rotation Forest with Differentiated Sampling Rates. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1879–1883. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Roy, S.K.; Haut, J.M.; Paoletti, M.E.; Dubey, S.R.; Plaza, A. Generative Adversarial Minority Oversampling for Spectral-patial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1695–1704. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Diversity analysis on imbalanced data sets by using ensemble models. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 324–331. [Google Scholar]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. In Progress in Artificial Intelligence; U.S. Department of Energy: Washington, DC, USA, 2016; pp. 221–232. [Google Scholar]
- Saez, J.A.; Krawczyk, B.; Wozniak, M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets. Pattern Recognit. 2016, 57, 164–178. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, C. An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowl. Based Syst. 2018, 158, 81–93. [Google Scholar] [CrossRef]
- William, I.V.; Krawczyk, B. Multi-class imbalanced big data classification on Spark. Knowl. Based Syst. 2020, 212, 106598. [Google Scholar]
- Dietterich, T. Ensemble Methods in Machine Learning. In Proceedings of the 1st International Workshop on Multiple Classifier Systems, Cagliari, Italy, 21–23 June 2000; pp. 1–15. [Google Scholar]
- Feng, W.; Quan, Y.; Dauphin, G.; Li, Q.; Gao, L.; Huang, W.; Xia, J.; Zhu, W.; Xing, M. Semi-supervised rotation forest based on ensemble margin theory for the classification of hyperspectral image with limited training data. Inf. Sci. 2021, 575, 611–638. [Google Scholar] [CrossRef]
- Feng, W.; Quan, Y.; Dauphin, G. Label Noise Cleaning with an Adaptive Ensemble Method Based on Noise Detection Metric. Sensors 2020, 20, 6718. [Google Scholar] [CrossRef]
- Quan, Y.; Zhong, X.; Feng, W.; Chan, C.W.; Xing, M. SMOTE-Based Weighted Deep Rotation Forest for the Imbalanced Hyperspectral Data Classification. Remote Sens. 2021, 13, 464. [Google Scholar] [CrossRef]
- Ribeiro, V.; Reynoso-Meza, G. Ensemble learning by means of a multi-objective optimization design approach for dealing with imbalanced data sets. Expert Syst. Appl. 2020, 147, 113232. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhu, Y.; Zhang, J.; Li, D. Multi-matrices entropy discriminant ensemble learning for imbalanced problem. Neural Comput. Appl. 2020, 32, 8245–8264. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, J.; Kang, L.; Qiu, G. A Hybrid Data-Level Ensemble to Enable Learning from Highly Imbalanced Dataset. Inf. Sci. 2020, 554, 157–176. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, P.; Xu, X.; Wang, B.; Li, D. Sample and feature selecting based ensemble learning for imbalanced problems. Appl. Soft Comput. 2021, 113, 107884. [Google Scholar] [CrossRef]
- Qin, W.; Zhuang, Z.L.; Guo, L.; Sun, Y. A hybrid multi-class imbalanced learning method for predicting the quality level of diesel engines. J. Manuf. Syst. 2021, 62, 846–856. [Google Scholar] [CrossRef]
- Cmv, A.; Jie, D.B. Accurate and efficient sequential ensemble learning for highly imbalanced multi-class data—ScienceDirect. Neural Netw. 2020, 128, 268–278. [Google Scholar]
- Chao, L.; Jiang, D.; Yang, W. Global geometric similarity scheme for feature selection in fault diagnosis. Expert Syst. Appl. 2014, 41, 3585–3595. [Google Scholar]
- Richhariya, B.; Tanveer, M. A reduced universum twin support vector machine for class imbalance learning. Pattern Recognit. 2020, 102, 107150. [Google Scholar] [CrossRef]
- Shahee, S.A.; Ananthakumar, U. An effective distance based feature selection approach for imbalanced data. Appl. Intell. 2020, 50, 717–745. [Google Scholar] [CrossRef]
- Chennuru, V.K.; Timmappareddy, S.R. Simulated annealing based undersampling (SAUS): A hybrid multi-objective optimization method to tackle class imbalance. Appl. Intell. 2021, 52, 2092–2110. [Google Scholar] [CrossRef]
- Lv, Q.; Feng, W.; Quan, Y.; Dauphin, G.; Gao, L.; Xing, M. Enhanced-Random-Feature-Subspace-Based Ensemble CNN for the Imbalanced Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3988–3999. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Oversampling Technique. J. Artif. Intell. Res. 2004, 16, 321–357. [Google Scholar] [CrossRef]
- Feng, W.; Boukir, S.; Huang, W. Margin-Based Random Forest for Imbalanced Land Cover Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Engelmann, J.; Lessmann, S. Conditional Wasserstein GAN-based Oversampling of Tabular Data for Imbalanced Learning. Expert Syst. Appl. 2021, 174, 114582. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, D.; Nie, T.; Kou, Y.; Han, X. An oversampling algorithm combining SMOTE and k-means for imbalanced medical data. Inf. Sci. 2021, 572, 574–589. [Google Scholar] [CrossRef]
- Sun, Y.; Kamel, M.S.; Wong, A.K.; Wang, Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40, 3358–3378. [Google Scholar] [CrossRef]
- Ertekin, S.; Huang, J.; Bottou, L.; Giles, C.L. Learning on the border: Active learning in imbalanced data classification. In Proceedings of the CIKM (Conference on Information and Knowledge Management); Silva, M.J., Laender, A.H.F., Baeza-Yates, R.A., McGuinness, D.L., Olstad, B., Olsen, H., Falcao, A.O., Eds.; ACM: New York, NY, USA, 2007; pp. 127–136. [Google Scholar]
- Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Li, Q. Dynamic Synthetic Minority Over-Sampling Technique-Based Rotation Forest for the Classification of Imbalanced Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, PP, 2159–2169. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Ding, Z.; Liu, Q.; Zhu, C. A comprehensive active learning method for multiclass imbalanced data streams with concept drift—ScienceDirect. Knowl. Based Syst. 2021, 215, 106778. [Google Scholar] [CrossRef]
- Lango, M.; Stefanowski, J. What makes multi-class imbalanced problems difficult? An experimental study. Expert Syst. Appl. 2022, 199, 116962. [Google Scholar] [CrossRef]
- Abdi, L.; Hashemi, S. To combat multi-class imbalanced problems by means of oversampling and boosting techniques. Soft Comput. 2015, 19, 3369–3385. [Google Scholar] [CrossRef]
- Janicka, M.; Lango, M.; Stefanowski, J. Using Information on Class Interrelations to Improve Classification of Multiclass Imbalanced Data: A New Resampling Algorithm. Int. J. Appl. Math. Comput. Sci. 2019, 29, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Soui, M.; Mansouri, N.; Alhamad, R.; Kessentini, M.; Ghedira, K. NSGA-II as feature selection technique and AdaBoost classifier for COVID-19 prediction using patient’s symptoms. Nonlinear Dyn. 2021, 106, 1453–1475. [Google Scholar] [CrossRef]
- Wang, S.; Yao, X. Multiclass Imbalance Problems: Analysis and Potential Solutions. IEEE Trans. Syst. Man Cybern. Part Cybern. 2012, 42, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012; p. 236. [Google Scholar]
- Khoshgoftaar, T.M.; Hulse, J.V.; Napolitano, A. Comparing Boosting and Bagging Techniques with Noisy and Imbalanced Data. IEEE Trans. Syst. Man Cybern. Part Syst. Humans 2011, 41, 552–568. [Google Scholar] [CrossRef]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part Appl. Rev. 2012, 42, 463–484. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhou, Z.H. Ensemble Methods for Class Imbalance Learning. In Imbalanced Learning: Foundations, Algorithms and Applications; He, H., Ma, Y., Eds.; Wiley-IEEE Press: River Street Hoboken, NJ, USA, 2013; pp. 61–82. [Google Scholar]
- Blaszczyński, J.; Stefanowski, J.; Idkowiak, L. Extending Bagging for Imbalanced Data. In Proceedings of the Eighth CORES (Core Ordering and Reporting Enterprise System); Springer: Berlin/Heidelberg, Germany, 2013; Volume 226, pp. 269–278. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Thanathamathee, P.; Lursinsap, C. Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and AdaBoost techniques. Pattern Recognit. Lett. 2013, 34, 1339–1347. [Google Scholar] [CrossRef]
- Diez-Pastor, J.; Rodriguez, J.; Garcia-Osorio, C.; Kuncheva, L.I. Random Balance: Ensembles of variable priors classifiers for imbalanced data. Knowl. Based Syst. 2015, 85, 96–111. [Google Scholar] [CrossRef]
- Barandela, R.; Sanchez, J.S.; Valdovinos, R.M. New Applications of Ensembles of Classifiers. Pattern Anal. Appl. 2003, 6, 245–256. [Google Scholar] [CrossRef]
- Blaszczynski, J.; Stefanowski, J. Neighbourhood sampling in Bagging for imbalanced data. Neurocomputing 2015, 150, 529–542. [Google Scholar] [CrossRef]
Indian Pines AVRIS | University of Pavia ROSIS | Salinas | |||||||
---|---|---|---|---|---|---|---|---|---|
Train. | Test | Train. | Test | Train. | Test | ||||
1 | Alfalfa | 23 | 23 | Asphalt | 331 | 6300 | Brocoli_green_weeds_1 | 100 | 1909 |
2 | Corn-notill | 428 | 1000 | Meadows | 932 | 17,717 | Brocoli_green_weeds_2 | 186 | 3540 |
3 | Corn-mintill | 249 | 581 | Gravel | 104 | 1995 | Fallow | 98 | 1878 |
4 | Corn | 71 | 166 | Trees | 153 | 2911 | Fallow_rough_plow | 69 | 1325 |
5 | Grass-pasture | 144 | 339 | Painted metal sheets | 67 | 1278 | Fallow_smooth | 133 | 2545 |
6 | Grass-trees | 219 | 511 | Bare Soil | 251 | 4778 | Stubble | 197 | 3762 |
7 | Grass-pasture-mowed | 14 | 14 | Bitumen | 66 | 1264 | Celery | 178 | 3401 |
8 | Hay-windrowed | 143 | 335 | Self-Blocking Bricks | 184 | 3498 | Grapes_untrained | 563 | 10,708 |
9 | Oats | 10 | 10 | Shadows | 47 | 900 | Soil_vinyard_develop | 310 | 5893 |
10 | Soybean-notill | 291 | 681 | Corn_senesced | 163 | 3115 | |||
green_weeds | |||||||||
11 | Soybean-mintill | 736 | 1719 | Lettuce_romaine_4wk | 53 | 1015 | |||
12 | Soybean-clean | 177 | 416 | Lettuce_romaine_5wk | 96 | 1831 | |||
13 | Wheat | 61 | 144 | Lettuce_romaine_6wk | 45 | 871 | |||
14 | Woods | 379 | 886 | Lettuce_romaine_7wk | 53 | 1017 | |||
15 | Buildings-Grass | 115 | 271 | Vinyard | 363 | 6905 | |||
Trees-Drives | untrained | ||||||||
16 | Stone-Steel-Towers | 46 | 47 | Vinyard_vertical_trellis | 90 | 1717 | |||
Total | 3106 | 7143 | 2135 | 40,641 | 2697 | 51,432 |
Adaboost | Bagging | RF | RUS Adaboost | ROS Adaboost | RUS Bagging | ROS Bagging | RUS RF | ROS RF | DRF | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 69.57 | 63.48 | 58.26 | 76.52 | 69.57 | 73.04 | 53.91 | 76.81 |
2 | 48.42 | 43.36 | 75.68 | 25.98 | 31.7 | 30.04 | 4.24 | 34.56 | 75.84 | 82.67 |
3 | 30.81 | 27.57 | 60.9 | 32.05 | 38 | 32.84 | 25.78 | 35.32 | 66.85 | 71.2 |
4 | 0 | 0 | 56.87 | 33.37 | 48.55 | 24.58 | 46.02 | 38.8 | 65.9 | 86.75 |
5 | 76.52 | 70.44 | 90.91 | 71.86 | 81.12 | 70.62 | 70.86 | 77.23 | 92.8 | 95.38 |
6 | 97.77 | 98 | 96.59 | 68.49 | 89.16 | 71.94 | 79.65 | 76.16 | 96.28 | 98.17 |
7 | 0 | 0 | 55.71 | 72.86 | 68.57 | 81.43 | 74.29 | 80 | 65.71 | 78.57 |
8 | 94.39 | 94.39 | 98.57 | 61.73 | 78.27 | 57.97 | 70.63 | 72.24 | 97.55 | 100 |
9 | 0 | 0 | 52 | 52 | 60 | 50 | 50 | 60 | 46 | 56.67 |
10 | 29.72 | 23.79 | 79.41 | 36.53 | 60.68 | 33.86 | 23.55 | 49.84 | 85.52 | 89.38 |
11 | 83.22 | 83.08 | 89.85 | 38.55 | 58.06 | 48.11 | 75.64 | 41.47 | 82.13 | 88.37 |
12 | 25.82 | 26.88 | 68.7 | 20.96 | 48.99 | 16.39 | 38.12 | 34.23 | 76.39 | 93.35 |
13 | 92.08 | 92.22 | 90.14 | 91.67 | 90.83 | 93.61 | 90.28 | 92.5 | 89.03 | 95.14 |
14 | 92.19 | 92.82 | 0 | 80.16 | 83.93 | 73.07 | 81.47 | 71.74 | 95.58 | 97.07 |
15 | 17.79 | 12.77 | 53.65 | 22.51 | 35.06 | 23.1 | 34.1 | 29.89 | 57.42 | 75.4 |
16 | 58.72 | 50.64 | 91.49 | 94.04 | 94.89 | 92.34 | 90.64 | 93.62 | 96.6 | 100 |
AA | 46.72 | 44.75 | 76.65 | 54.14 | 64.13 | 54.78 | 57.8 | 60.04 | 77.72 | 86.56 |
OA | 63.05 | 61.11 | 82.72 | 45.89 | 59.77 | 47.34 | 53.06 | 50.83 | 82.65 | 88.8 |
F-measure | 48.47 | 47.05 | 81.37 | 47.09 | 59 | 48.44 | 52.8 | 53.4 | 79.32 | 88.47 |
G-mean | 0 | 0 | 74.75 | 46.47 | 60.69 | 46.47 | 10.4 | 55.27 | 75.78 | 85.63 |
Adaboost | Bagging | RF | RUS Adaboost | ROS Adaboost | RUS Bagging | ROS Bagging | RUS RF | ROS RF | DRF | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 90.27 | 93.55 | 92.17 | 72.44 | 82.5 | 66.47 | 61.09 | 72.29 | 89.71 | 95.11 |
2 | 96.1 | 97.29 | 97.09 | 67.04 | 82.76 | 56.64 | 30.4 | 61.21 | 92.1 | 95.82 |
3 | 59.93 | 20.82 | 58.64 | 56.92 | 63.77 | 57.26 | 68.6 | 70.24 | 61.83 | 75.51 |
4 | 86.42 | 81.31 | 86.83 | 92.09 | 92.97 | 87 | 96.95 | 95.59 | 91.41 | 94.53 |
5 | 98.37 | 95.62 | 98.62 | 98.72 | 98.72 | 98.72 | 98.44 | 99.09 | 99.01 | 99.79 |
6 | 71.76 | 28.66 | 58.07 | 68.61 | 80.56 | 65.39 | 88.89 | 72.36 | 72.8 | 90.25 |
7 | 75.74 | 0 | 78.54 | 88.67 | 86.65 | 83.61 | 86.61 | 87.37 | 78.89 | 81.86 |
8 | 86.52 | 89.08 | 85.4 | 80.22 | 83.76 | 73.58 | 69.19 | 73.7 | 85.23 | 88.16 |
9 | 97.62 | 98.89 | 99.07 | 97.27 | 98.91 | 99.16 | 99.56 | 100 | 100 | 100 |
AA | 84.75 | 67.25 | 83.82 | 80.22 | 85.62 | 76.42 | 77.75 | 81.32 | 85.66 | 91.22 |
OA | 88.51 | 79.99 | 87.63 | 72.83 | 83.33 | 65.96 | 57.43 | 71.08 | 87.32 | 93.09 |
F-measure | 86.2 | 70.68 | 86.09 | 76.29 | 83.27 | 71.96 | 72.96 | 77.06 | 85.84 | 91.83 |
G-mean | 83.75 | 0 | 82.3 | 78.88 | 84.98 | 74.57 | 73.68 | 80.07 | 84.78 | 90.88 |
Adaboost | Bagging | RF | RUS Adaboost | ROS Adaboost | RUS Bagging | ROS Bagging | RUS RF | ROS RF | DRF | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 99.47 | 97.48 | 99.46 | 98.16 | 99.58 | 98.02 | 97.62 | 98.96 | 99.47 | 99.76 |
2 | 99.77 | 98.61 | 99.79 | 98.52 | 99.6 | 98.31 | 98.43 | 97.97 | 99.84 | 99.84 |
3 | 95.08 | 87.24 | 95.27 | 91.95 | 95.86 | 85.31 | 86.42 | 95.41 | 97.8 | 97.8 |
4 | 97.89 | 91.56 | 99.58 | 95.55 | 98.61 | 97.87 | 99.7 | 99.14 | 99.68 | 99.7 |
5 | 96.82 | 94.92 | 96.86 | 96.01 | 96.44 | 94.92 | 96.2 | 96.79 | 97.38 | 98.72 |
6 | 99.82 | 99.14 | 99.71 | 99.69 | 99.84 | 99.18 | 99.15 | 99.43 | 99.78 | 99.82 |
7 | 99.66 | 98.94 | 99.22 | 98.48 | 99.65 | 97.55 | 98.89 | 97.92 | 99.43 | 99.72 |
8 | 84.52 | 77.4 | 84.49 | 65.94 | 78.87 | 54.19 | 58.83 | 65.09 | 76.36 | 91.57 |
9 | 99.21 | 97.74 | 99.06 | 99.02 | 99.05 | 97.95 | 97.25 | 98.68 | 99.15 | 99.79 |
10 | 89.97 | 72.35 | 89.66 | 85.92 | 89.84 | 77.68 | 77.93 | 85.16 | 90.56 | 94.85 |
11 | 90.29 | 86.01 | 91.9 | 90.07 | 91.05 | 89.6 | 88.45 | 89.93 | 89.64 | 95.17 |
12 | 98.44 | 94.77 | 98.86 | 97.33 | 98.5 | 95.75 | 96.69 | 98.03 | 98.98 | 100 |
13 | 95.59 | 95.09 | 96.12 | 96.46 | 95.2 | 95.2 | 94.81 | 95.27 | 94.58 | 95.94 |
14 | 97.17 | 94.69 | 96.83 | 96.18 | 96.79 | 95.38 | 94.75 | 96.62 | 97.09 | 97.97 |
15 | 67.93 | 53.96 | 61.96 | 59.86 | 71.09 | 68.34 | 65.47 | 62.96 | 68.09 | 64.63 |
16 | 97.48 | 95.17 | 97.51 | 95.55 | 97.83 | 96.26 | 95.57 | 95.76 | 97.69 | 99.17 |
AA | 94.32 | 89.69 | 94.14 | 91.54 | 94.24 | 90.09 | 90.39 | 92.07 | 94.1 | 95.9 |
OA | 90.85 | 85.11 | 90.07 | 85.08 | 90.11 | 82.72 | 83.43 | 85.44 | 89.36 | 92.72 |
F-measure | 94.22 | 89.24 | 94 | 90.25 | 93.79 | 88.51 | 88.84 | 90.66 | 93.62 | 95.93 |
G-mean | 93.92 | 88.72 | 93.58 | 90.66 | 93.86 | 89 | 89.42 | 91.22 | 93.6 | 95.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, D.; Feng, W.; Dauphin, G.; Wang, X.; Huang, W.; Xing, M. A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data. Remote Sens. 2022, 14, 3765. https://doi.org/10.3390/rs14153765
Quan D, Feng W, Dauphin G, Wang X, Huang W, Xing M. A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data. Remote Sensing. 2022; 14(15):3765. https://doi.org/10.3390/rs14153765
Chicago/Turabian StyleQuan, Daying, Wei Feng, Gabriel Dauphin, Xiaofeng Wang, Wenjiang Huang, and Mengdao Xing. 2022. "A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data" Remote Sensing 14, no. 15: 3765. https://doi.org/10.3390/rs14153765
APA StyleQuan, D., Feng, W., Dauphin, G., Wang, X., Huang, W., & Xing, M. (2022). A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data. Remote Sensing, 14(15), 3765. https://doi.org/10.3390/rs14153765