Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau
<p>Location map of the study area. (<b>a</b>) Digital elevation model (I: the base data of the dataset, II: the base area to be identified). (<b>b</b>) Provincial administrative boundaries.</p> "> Figure 2
<p>Methodological flowchart of deep learning instance segmentation.</p> "> Figure 3
<p>Flowchart to obtain samples for training and creating a Common Object in Context (COCO) annotation format.</p> "> Figure 4
<p>The overall architecture of Mask R-CNN+++. The backbone shows the modified architecture with the attention feature pyramid network and the predictions (three tasks).</p> "> Figure 5
<p><b>Left</b>: A block of ResNet. <b>Right</b>: A block of ResNext. Layer is shown (as in channels, filter size, out channels). 256-d indicates that the dimension is 256.1 × 1 indicates that the convolution kernel size is 1 × 1. The plus sign (+) indicates the corresponding addition of numbers.</p> "> Figure 6
<p>Illustration of a 3 × 3 deformable convolution. The offset field comes from the input feature map and has the same spatial resolution as the input.</p> "> Figure 7
<p>Overview of the CBAM. The module has two sequential submodules: channel and spatial. Different colors and shapes represent different convolution blocks.</p> "> Figure 8
<p>Self-attention module structure diagram. Different colors and shapes represent different convolution blocks.</p> "> Figure 9
<p>Comparison results of different combination models: (<b>a</b>–<b>d</b>) are cropped images; (<b>a</b>,<b>b</b>) are single targets in different terrains; and (<b>c</b>,<b>d</b>) are multiple targets in different terrains. In the column “Comparison of results”, black, yellow, and red represent the recognition results of Mask R-CNN, Mask R-CNN+++ (CBAM), and Mask R-CNN+++ (SA), respectively.</p> "> Figure 10
<p>This figure shows the study area image obtained by using the proposed method. Red, yellow, and black represent the different objects of the same deformation class.</p> "> Figure 11
<p>The above images (<b>a</b>–<b>c</b>) and (<b>a’</b>–<b>c’</b>) show different patterns of plaques and landforms.</p> "> Figure 12
<p>The above images (<b>a</b>–<b>c</b>) and (<b>a’</b>–<b>c’</b>) show patches of different brightnesses and landforms.</p> ">
Abstract
:1. Introduction
2. Research Area
3. Data and Methods
3.1. InSAR Data Processing
3.2. Automatic Recognition Solutions
3.2.1. Construction and Partitioning of the Dataset
3.2.2. Model Description
- ResNext Convolution Block
- 2.
- Deformable Convolution Block
- 3.
- Attentional Mechanisms
3.3. Experiments
3.3.1. Model Training
3.3.2. Evaluation Indicators
4. Results
4.1. Indicator Results
4.2. Recognition Results
4.2.1. Test Set Recognition Results
4.2.2. Application Recognition Results
4.2.3. Identify the Preliminary Results of the Classification
5. Discussion
5.1. Advantages of the Present Model in the Recognition Process
5.2. Impact of Instance Segmentation Model Optimization on the Recognition Process
5.3. Uncertainty in Observation and Identification under Different Natural Conditions
5.4. Influence of the Input Scale on the Identification Results
5.5. Potential Uncertainty of Geological Body Characteristics and Landslide Type Recognition
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, F.; Lee, C.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Brardinoni, F.; Slaymaker, O.; Hassan, M.A. Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology 2003, 54, 179–196. [Google Scholar] [CrossRef]
- Gu, Z.; Shi, C.; Yang, H.; Yao, H. Analysis of dynamic sedimentary environments in alluvial fans of some tributaries of the upper Yellow River of China based on ground penetrating radar (GPR) and sediment cores. Quat. Int. 2019, 509, 30–40. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Y.; Fan, H. Mapping inter-and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat time-series and water level data. J. Hydrol. 2021, 601, 126644. [Google Scholar] [CrossRef]
- Glabsch, J.; Heunecke, O.; Schuhbäck, S. Monitoring the Hornbergl landslide using a recently developed low cost GNSS sensor network. J. Appl. Geod. 2009, 3, 179–192. [Google Scholar] [CrossRef]
- Zhenkai, Z.; Xin, Y.; Hongyan, L.; Kaiyu, R. Accurate Identification of Active Landslides in Region Composed with Glacier, Forest, Steep Valley: A Case Study in the Lantsang Meili Snow Mountain Section. Adv. Eng. Sci. 2020, 52, 61–74. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Yao, L.; Yao, C. Detection and characterization of active landslides with multisource SAR data and remote sensing in western Guizhou, China. Nat. Hazards 2022, 111, 1–22. [Google Scholar] [CrossRef]
- Achache, J.; Fruneau, B.; Delacourt, C. Applicability of SAR interferometry for monitoring of landslides. In Proceedings of the Second ERS Applications Workshop, London, UK, 6–8 December 1995; p. 15. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef]
- Kankaku, Y.; Suzuki, S.; Osawa, Y. ALOS-2 mission and development status. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2396–2399. [Google Scholar]
- Zhang, W.; Lin, Y. Application preliminary evaluation of HJ-1-C SAR satellite of S band. In Proceedings of the MIPPR 2015: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, Enshi, China, 14 December 2015; pp. 295–299. [Google Scholar]
- Ye, X.; Kaufmann, H.; Guo, X. Landslide monitoring in the Three Gorges area using D-InSAR and corner reflectors. Photogramm. Eng. Remote Sens. 2004, 70, 1167–1172. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.; Hu, J.; Li, Z.; Zhu, J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens. Environ. 2015, 156, 45–57. [Google Scholar] [CrossRef]
- Yao, X.; Li, L.; Zhang, Y.; Zhou, Z.; Liu, X. Types and characteristics of slow-moving slope geo-hazards recognized by TS-InSAR along Xianshuihe active fault in the eastern Tibet Plateau. Nat. Hazards 2017, 88, 1727–1740. [Google Scholar] [CrossRef]
- Yao, C.; Yao, X.; Gu, Z.; Ren, K.; Zhou, Z. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification. J. Geomech. 2022, 28, 257–267. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Zhou, Z.; Wang, F. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China:A case study in the Xiluodu Reservoir. J. Geomech. 2022, 28, 281–293. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Yao, L.; Zhou, Z.; Yao, C.; Xiao, S. Identification and risk assessment of coal mining-induced landslides in Guizhou Province by InSAR and optical remote sensing. J. Geomech. 2022, 28, 268–280. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Zhou, Z.; Li, L.; Y, J. Study of the technique for landslide rapid recognition by InSAR. J. Geomech. 2018, 24, 229–237. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Hill, P.; Bull, D. Application of Machine Learning to Classification of Volcanic Deformation in Routinely Generated InSAR Data. J. Geophys. Res. Solid Earth 2018, 123, 6592–6606. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Biggs, J.; Albino, F.; Bull, D. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens. Environ. 2019, 230, 111179. [Google Scholar] [CrossRef]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef]
- Hooper, A.; Gaddes, M.; Bagnardi, M.; Albino, F. Towards Improved Forecasting of Volcanic Hazards Using Machine Learning Applied to InSAR Data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Kuala Lumpur, Malaysia, 11–16 July 2021; pp. 8484–8486. [Google Scholar]
- Brengman, C.M.; Barnhart, W.D. Identification of surface deformation in InSAR using machine learning. Geochem. Geophys. Geosystems 2021, 22, e2020GC009204. [Google Scholar] [CrossRef]
- Kamiyama, J.; Noro, T.; Sakagami, M.; Suzuki, Y.; Yoshikawa, K.; Hikosaka, S.; Hirata, I. Detection of Landslide Candidate Interference Fringes in DInSAR Imagery Using Deep Learning. Recall 2018, 90, 95. [Google Scholar]
- Chen, X.; Yao, X.; Zhou, Z.; Liu, Y.; Yao, C.; Ren, K. DRs-UNet: A Deep Semantic Segmentation Network for the Recognition of Active Landslides from InSAR Imagery in the Three Rivers Region of the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 1848. [Google Scholar] [CrossRef]
- Riedel, B.; Walther, A. InSAR processing for the recognition of landslides. Adv. Geosci. 2008, 14, 189–194. [Google Scholar] [CrossRef]
- Bhargavi, K.; Jyothi, S. A survey on threshold based segmentation technique in image processing. Int. J. Innov. Res. Dev. 2014, 3, 234–239. [Google Scholar]
- Bhardwaj, S.; Mittal, A. A survey on various edge detector techniques. Procedia Technol. 2012, 4, 220–226. [Google Scholar] [CrossRef]
- Masood, S.; Sharif, M.; Masood, A.; Yasmin, M.; Raza, M.J.C.M.I. A survey on medical image segmentation. Curr. Med. Imaging 2015, 11, 3–14. [Google Scholar] [CrossRef]
- Dhanachandra, N.; Chanu, Y.J. A survey on image segmentation methods using clustering techniques. Eur. J. Eng. Technol. Res. 2017, 2, 15–20. [Google Scholar] [CrossRef]
- Sreedhar, B.; BE, M.S.; Kumar, M.S. A comparative study of melanoma skin cancer detection in traditional and current image processing techniques. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 7–9 October 2020; pp. 654–658. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 2017; pp. 2961–2969. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Toms, S. ArcPy and ArcGIS–Geospatial Analysis with Python; Kindle, Ed.; Packt: Birmingham, UK, 2015. [Google Scholar]
- Peng, C.; Rong, C.; Lingzhi, X.; Fenghuan, S. Risk analysis of mountain hazards in Tibetan Plateau under global warming. Adv. Clim. Chang. Res. 2014, 10, 103. [Google Scholar] [CrossRef]
- Wu, Z.; Long, C.; Fan, T.; Zhou, C.; Feng, H.; Yang, Z.; Tong, Y. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism. Geol. Bull. China 2015, 34, 1–31. [Google Scholar] [CrossRef]
- Jun, D.; Chang-Meng, W.; Wen-Chang, L.; Li-Jiang, Y.; Qiang-Fei, W. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. Earth Sci. Front. 2014, 21, 52. [Google Scholar] [CrossRef]
- Deng, Q.-D.; Cheng, S.-P.; Ma, J.; Du, P. Seismic activities and earthquake potential in the Tibetan Plateau. Chin. J. Geophys. 2014, 57, 678–697. [Google Scholar] [CrossRef]
- Liu, J.; Ding, L.; Zeng, L.-S. Large-scale terrain analysis of selected regions of the Tibetan Plateau: Discussion on the origin of plateau planation surface. Earth Sci. Front. 2006, 13, 285. [Google Scholar] [CrossRef]
- Dai, F.; Deng, J. Development characteristics of landslide hazards in three-rivers basin of southeast Tibetan Plateau. Adv. Eng. Sci. 2020, 52, 3–15. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X.; Chen, J.; Li, L.; Zhou, Z. Study on the atmospheric correction of d-insar removal by three-dimensional space multi-item model-a case study of qiaojia landslide deformation observation in jinshajiang. J. Eng. Geol. 2018, 26, 14–21. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 5–12 September 2014; pp. 740–755. [Google Scholar]
- Couteaux, V.; Si-Mohamed, S.; Nempont, O.; Lefevre, T.; Popoff, A.; Pizaine, G.; Villain, N.; Bloch, I.; Cotten, A.; Boussel, L. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn. Interv. Imaging 2019, 100, 235–242. [Google Scholar] [CrossRef]
- Johnson, J.W. Automatic nucleus segmentation with mask-RCNN. In Proceedings of the Science and Information Conference, Las Vegas, NV, USA, 2–3 May 2019; pp. 399–407. [Google Scholar]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention Mechanisms in Computer Vision: A Survey. arXiv 2021, arXiv:2111.07624. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Sun, P.; Piao, J.-C.; Cui, X. Object Detection in Urban Aerial Image Based on Advanced YOLO v3 Algorithm. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 2191–2196. [Google Scholar]
- Nie, X.; Duan, M.; Ding, H.; Hu, B.; Wong, E.K. Attention mask R-CNN for ship detection and segmentation from remote sensing images. IEEE Access 2020, 8, 9325–9334. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Jiang, Z.; Chaudhuri, S.; Yang, Z.; Nevatia, R. SPAN: Spatial pyramid attention network for image manipulation localization. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 312–328. [Google Scholar]
- Zhang, X.; An, G.; Liu, Y. Mask R-CNN with feature pyramid attention for instance segmentation. In Proceedings of the 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 12–16 August 2018; pp. 1194–1197. [Google Scholar]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS Int. J. Geo Inf. 2018, 7, 438. [Google Scholar] [CrossRef]
- TIAN, Y.; CHEN, L.; HUANG, H.; GAO, B.; ZHANG, J. Origin and stability of landslides in Chaya County, Lancang River Basin, Tibet. Geol. Bull. China 2021, 40, 2034–2042. [Google Scholar]
- Zhu, X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Chen, L.; Xie, T.; Wang, X.; Wang, C. Identifying urban villages from city-wide satellite imagery leveraging mask R-CNN. In Proceedings of the Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 29–32. [Google Scholar]
- Gu, W.; Bai, S.; Kong, L. A review on 2D instance segmentation based on deep neural networks. Image Vis. Comput. 2022, 120, 104401. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Yao, J.; Zhou, Z.; Feng, X.; Liu, X. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China. Nat. Hazards 2019, 98, 719–733. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Gullentops, F.; Vandekerckhove, L.; Hervás, J. Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat. Res. 2011, 75, 721–733. [Google Scholar] [CrossRef]
- Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys. Res. Lett. 2018, 45, 1453–1462. [Google Scholar] [CrossRef]
- XU, Q.; DONG, X.; LI, W. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, W.; Ju, N.; He, C.; Huang, H.; Cui, Q. Landslide evolution assessment based on InSAR and real-time monitoring of a large reactivated landslide, Wenchuan, China. Eng. Geol. 2020, 277, 105781. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef]
Real Results | Landslides | Others | |
---|---|---|---|
Predicted Results | |||
Landslides | True Positive (TP) | False Positive (FP) | |
Others | False Negative (FN) | True Negative (TN) |
Method | Accuracy | F1-Score | mIoU |
---|---|---|---|
Mask R-CNN (Baseline) | 89.19 | 81.24 | 84.38 |
Mask R-CNN-ResNext | 90.44 | 81.63 | 85.02 |
Mask R-CNN-ResNext-DCB | 91.37 | 82.58 | 87.19 |
Mask R-CNN-ResNext-DCB +CBAM | 92.86 | 84.06 | 86.42 |
Mask R-CNN-ResNext-DCB +SA | 92.94 | 84.12 | 90.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yao, X.; Gu, Z.; Zhou, Z.; Liu, X.; Chen, X.; Wei, S. Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. Remote Sens. 2022, 14, 3362. https://doi.org/10.3390/rs14143362
Liu Y, Yao X, Gu Z, Zhou Z, Liu X, Chen X, Wei S. Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. Remote Sensing. 2022; 14(14):3362. https://doi.org/10.3390/rs14143362
Chicago/Turabian StyleLiu, Yang, Xin Yao, Zhenkui Gu, Zhenkai Zhou, Xinghong Liu, Xingming Chen, and Shangfei Wei. 2022. "Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau" Remote Sensing 14, no. 14: 3362. https://doi.org/10.3390/rs14143362
APA StyleLiu, Y., Yao, X., Gu, Z., Zhou, Z., Liu, X., Chen, X., & Wei, S. (2022). Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. Remote Sensing, 14(14), 3362. https://doi.org/10.3390/rs14143362