Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges
<p>Delimitation of South American drylands based on the definition from UNEP-WCMC, including drought-vulnerable areas. Notes: AR: Argentina; BO: Bolivia; BR: Brazil; CL: Chile; CO: Colombia; EC: Ecuador; FI: Falkland Islands; FR: French Guyana; GY: Guyana; PE: Peru; PY: Paraguay; SGSSI: South Georgia and South Sandwich Island; SR: Suriname; UY: Uruguay; VE: Venezuela.</p> "> Figure 2
<p>Timeline of RS-based mapping efforts that comprise South America’s drylands. For initiatives that have multiple collections or versions, only the first appears in the timeline. Note that each box color corresponds to a specific mapping coverage.</p> "> Figure 3
<p>Proportional representation of RS datasets used by South America’s dryland mapping initiatives. The legend shows the satellite’s name followed by the sensor’s name.</p> "> Figure 4
<p>Proportional representation of the classification methods used by South America’s dryland mapping initiatives.</p> "> Figure 5
<p>Dryland classes typically found in South America maps.</p> "> Figure 6
<p>Proportional representation of the strategies adopted to validate South America’s dryland mapping initiatives.</p> ">
Abstract
:1. Introduction
2. Definition of Drylands
- Hyperarid zone (AI < 0.05): areas with deficient and irregular seasonal rainfall and perennial vegetation restricted to shrubs in riverbeds. It is relevant to mention that we adjusted the boundary between hyperarid and arid zones to fit the definition we are following, given by UNEP-WCMC. UNESCO originally adopted a more restrictive threshold for this zone (AI < 0.03);
- Arid zone (0.05 ≤ AI < 0.2): areas with annual rainfall between 80 and 350 mm, and perennial vegetation consisting of woody succulent, thorny or leafless shrubs;
- Semiarid zone (0.2 ≤ AI < 0.5): areas with mean annual rainfall between 30 and 800 mm in the summer and between 200 and 500 mm in the winter at the Mediterranean and tropical latitudes; vegetation is composed of steppes, savannas, and scrubs;
- Dry Subhumid zone (0.5 ≤ AI < 0.65): areas that comprise primarily tropical savannas and steppes.
3. Study Area: South American Drylands
4. Literature Search and Selection of Sources
4.1. Mapping Initiatives in South American Drylands Using Remote Sensing
Mapping Coverage | Reference 1,2 | Dataset | Classifier | Legend 3 | Validation |
---|---|---|---|---|---|
Global | CGLS [63] | PROBA-V | Random Forest | 23 classes | Overall Agreement/Confusion Matrix S |
FROM-GLC [61,62] | Landsat | Random Forest/Support Vector Machine | 26 classes | Confusion Matrix R | |
GLCNMO [64] | MODIS | Maximum Likelihood | 20 classes | Confusion Matrix R | |
GlobCover [65] | MERIS | Unsupervised | 22 classes | Confusion Matrix R | |
IGBP-DISCover [66] | AVHRR | K-Means | 17 classes | Confusion Matrix R | |
MLCT [67,68] | MODIS | Random Forest | 23 classes | Cross-validation | |
UMd (1994) [69] | AVHRR | Maximum Likelihood | 11 classes | N/A | |
UMd (2000) [70] | AVHRR | Decision Tree | 14 classes | Overall Agreement | |
Continental (South America) | JRC SA—GLC2000 [71] | Various | ISODATA | 12 classes | Overall Agreement/ Confusion Matrix S |
SERENA [72] | MODIS | C5.0 | 22 classes | Confusion Matrix R | |
SSU [73] | MODIS | Random Forest | 8 classes | Confusion Matrix R | |
UMd S.A. [74] | AVHRR | Maximum Likelihood | 16 classes | Overall Agreement | |
USGS S.A. [75] | Landsat | Random Forest | 7 classes | Confusion Matrix S | |
WH [76] | AVHRR | Unsupervised | 39 classes | Reliability Ratings/ Visual Comparison | |
Country | MapBiomas—Brazil [77] | Landsat | Random Forest | 27 classes | Confusion Matrix S |
INPE—Brazil [78] | PROBA-V | Random Forest | 7 classes | Overall Agreement S | |
TU—Chile [79] | Landsat | Random Forest | 35 classes | Confusion Matrix S | |
Regional | SSU—Dry Chaco [80] | MODIS | Random Forest | 8 classes | Confusion Matrix |
KSU—Paraguayan Chaco [81] | MODIS | ISODATA | 6 classes | Confusion Matrix S | |
MU—Espinal [52] | Landsat | Maximum Likelihood | 8 classes | Confusion Matrix | |
Proveg-NEB—Northeast Brazil [82] | Landsat | ISOSEG | 7 classes | Visual Comparison | |
UAH—Central Chile [83] | Landsat | Maximum Likelihood | 8 classes | Overall Agreement/ Confusion Matrix | |
ULA—Llanos del Orinoco [84] | AVHRR | Mahalanobis Distance | 8 classes | Confusion Matrix |
4.2. Remote Sensing Dataset
4.3. LULC Classification Methods
4.4. Classification Schemes
4.5. Validation Strategies
5. Discussion
5.1. Desertification
5.2. Climate Change
5.3. Fire Mapping
5.4. Dryland Populations
6. Methodological Trends and Current Challenges in Dryland Mapping
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Convention to Combat Desertification. Valuing the Biodiversity of Dry and Sub-Humid Lands; Technical Series No. 71; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2013. [Google Scholar]
- Davies, J.; Poulsen, L.; Schulte-Herbrüggen, B.; Mackinnon, K.; Crawhall, N.; Henwood, W.D.; Dudley, N.; Smith, J.; Gudka, M. Conserving Dryland Biodiversity; IUCN: Cambridge, UK, 2012; p. 101. [Google Scholar]
- Gudka, M.; Davies, J.; Poulsen, L.; Schulte-Herbrüggen, B.; MacKinnon, K.; Crawhall, N.; Henwood, W.D.; Dudley, N.; Smith, J. Conserving Dryland Biodiversity: A Future Vision of Sustainable Dryland Development. Biodiversity 2014, 15, 143–147. [Google Scholar] [CrossRef]
- Xue, Y.; Hutjes, R.W.A.; Harding, R.J.; Claussen, M.; Prince, S.D.; Lebel, T.; Lambin, E.F.; Allen, S.J.; Dirmeyer, P.A.; Oki, T. The Sahelian Climate. In Vegetation, Water, Humans and the Climate; Kabat, P., Claussen, M., Dirmeyer, P.A., Gash, J.H.C., de Guenni, L.B., Meybeck, M., Pielke, R.A., Vörösmarty, C.I., Hutjes, R.W.A., Lütkemeier, S., Eds.; Global Change—The IGBP Series; Springer: Berlin/Heidelberg, Germany, 2004; pp. 59–77. ISBN 978-3-642-62373-8. [Google Scholar]
- FAO—Food and Agriculture Organization of the United Nations. Trees, Forests and Land Use in Drylands: The First Global Assessment: Full Report; FAO Forestry Paper No. 184; FAO: Rome, Italy, 2019; ISBN 978-92-5-131999-4. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-590-9. [Google Scholar]
- Wang, L.; D’Odorico, P.; Evans, J.P.; Eldridge, D.J.; McCabe, M.F.; Caylor, K.K.; King, E.G. Dryland Ecohydrology and Climate Change: Critical Issues and Technical Advances. Hydrol. Earth Syst. Sci. 2012, 16, 2585–2603. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote Sensing of Dryland Ecosystem Structure and Function: Progress, Challenges, and Opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.X.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted Characteristics of Dryland Aridity Changes in a Warming World. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Prăvălie, R. Drylands Extent and Environmental Issues. A Global Approach. Earth-Sci. Rev. 2016, 161, 259–278. [Google Scholar] [CrossRef]
- Maestre, F.T.; Quero, J.L.; Gotelli, N.J.; Escudero, A.; Ochoa, V.; Delgado-Baquerizo, M.; García-Gómez, M.; Bowker, M.A.; Soliveres, S.; Escolar, C.; et al. Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science 2012, 335, 6. [Google Scholar] [CrossRef] [Green Version]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic Climate Change Has Driven over 5 Million km2 of Drylands towards Desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Wu, J.; Evans, J.; García-Oliva, F.; Hussein, I.A.G.; Iqbal, M.H.; Kimutai, J.; Kmowles, T.; Meza, F.; Nedjraoui, D.; et al. Desertification. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Stringer, L.C.; Reed, M.S.; Fleskens, L.; Thomas, R.J.; Le, Q.B.; Lala-Pritchard, T. A New Dryland Development Paradigm Grounded in Empirical Analysis of Dryland Systems Science. Land Degrad. Develop. 2017, 28, 1952–1961. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N. Deserts: A Very Short Introduction; Oxford University Press: New York, NY, USA, 2009; ISBN 978-0-19-956430-9. [Google Scholar]
- Adeel, Z.; Bogardi, J.; Braeuel, C.; Chasek, P.; Niamir-Fuller, M.; Gabriels, D.; King, C.; Knabe, F.; Kowsar, A.; Salem, B.; et al. Re-Thinking Policies to Cope with Desertification. 2007. Available online: https://www.pseau.org/outils/ouvrages/inweh_policies_to_cope_desertification.pdf (accessed on 1 October 2021).
- Schwilch, G.; Liniger, H.P.; Hurni, H. Sustainable Land Management (SLM) Practices in Drylands: How Do They Address Desertification Threats? Environ. Manag. 2014, 54, 983–1004. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon Cycling in Global Drylands. Curr. Clim. Chang. Rep. 2019, 5, 221–232. [Google Scholar] [CrossRef]
- Xue, Y. Interactions and Feedbacks between Climate and Dryland Vegetations. In Dryland Ecohydrology; D’Odorico, P., Porporato, A., Wilkinson Runyan, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 139–169. ISBN 978-3-030-23268-9. [Google Scholar]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of Semi-Arid Ecosystems to Interannual Variability of the Global Carbon Cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlstrom, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The Dominant Role of Semi-Arid Ecosystems in the Trend and Variability of the Land CO2 Sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Breshears, D.D. The Grassland–Forest Continuum: Trends in Ecosystem Properties for Woody Plant Mosaics? Front. Ecol. Environ. 2006, 4, 96–104. [Google Scholar] [CrossRef]
- Beuchle, R.; Grecchi, R.C.; Shimabukuro, Y.E.; Seliger, R.; Eva, H.D.; Sano, E.; Achard, F. Land Cover Changes in the Brazilian Cerrado and Caatinga Biomes from 1990 to 2010 Based on a Systematic Remote Sensing Sampling Approach. Appl. Geogr. 2015, 58, 116–127. [Google Scholar] [CrossRef]
- Santos, J.C.; Leal, I.R.; Almeida-Cortez, J.S.; Fernandes, G.W.; Tabarelli, M. Caatinga: The Scientific Negligence Experienced by a Dry Tropical Forest. Trop. Conserv. Sci. 2011, 4, 276–286. [Google Scholar] [CrossRef]
- Ganem, K.A.; Dutra, A.C.; de Oliveira, M.T.; de Freitas, R.M.; Grecchi, R.C.; da Vieira, R.M.; Arai, E.; Silva, F.B.; Sampaio, C.B.V.; Duarte, V.; et al. Mapping Caatinga Vegetation Using Optical Earth Observation Data—Opportunities and Challenges. Rev. Bras. Cartogr. 2020, 72, 829–854. [Google Scholar] [CrossRef]
- Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt, R. Assessing Woody Vegetation Trends in Sahelian Drylands Using MODIS Based Seasonal Metrics. Remote Sens. Environ. 2016, 183, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat Remote Sensing Approaches for Monitoring Long-Term Tree Cover Dynamics in Semi-Arid Woodlands: Comparison of Vegetation Indices and Spectral Mixture Analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D.; et al. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Latham, J.S.; Di Gregorio, A.; Schmullius, C.C. Evolving Standards in Land Cover Characterization. J. Land Use Sci. 2006, 1, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Paneque-Gálvez, J.; Mas, J.-F.; Moré, G.; Cristóbal, J.; Orta-Martínez, M.; Luz, A.C.; Guèze, M.; Macía, M.J.; Reyes-García, V. Enhanced Land Use/Cover Classification of Heterogeneous Tropical Landscapes Using Support Vector Machines and Textural Homogeneity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 372–383. [Google Scholar] [CrossRef]
- Henry, C.J.; Storie, C.D.; Palaniappan, M.; Alhassan, V.; Swamy, M.; Aleshinloye, D.; Curtis, A.; Kim, D. Automated LULC Map Production Using Deep Neural Networks. Int. J. Remote Sens. 2019, 40, 4416–4440. [Google Scholar] [CrossRef]
- Cardozo, F.d.S.; Shimabukuro, Y.E.; Pereira, G.; Silva, F.B. Using Remote Sensing Products for Environmental Analysis in South America. Remote Sens. 2011, 3, 2110–2127. [Google Scholar] [CrossRef] [Green Version]
- Dashti, H.; Poley, A.; Glenn, N.F.; Ilangakoon, N.; Spaete, L.; Roberts, D.; Enterkine, J.; Flores, A.N.; Ustin, S.L.; Mitchell, J.J. Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach. Remote Sens. 2019, 11, 2141. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Budyko, M.I.O. Klimaticheskikh Factorakh Stoka. Problemyfiz. Geog. 1951, 16, 41–48. [Google Scholar]
- Meigs, P. World Distribution of Arid and Semiarid Homoclimates; Arid Zone Programme; UNESCO: Paris, France, 1953; Volume 1, pp. 203–210. [Google Scholar]
- UNESCO. Map of the World Distribution of Arid Regions: Explanatory Note; UNESCO: Paris, France, 1979. [Google Scholar]
- Allen, R.G.; Pereiro, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop. Water Requirements: FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 327. [Google Scholar]
- Bruins, H.J.; Berliner, P.R. Bioclimatic Aridity, Climatic Variability, Drought and Desertification: Definitions and Management Options. In The Arid Frontier; The GeoJournal Library; Bruins, H.J., Lithwick, H., Eds.; Springer: Dordrecht, The Netherlands, 1998; Volume 41, ISBN 978-94-011-4888-7. [Google Scholar]
- Berg, A.; McColl, K.A. No Projected Global Drylands Expansion under Greenhouse Warming. Nat. Clim. Chang. 2021, 11, 331–337. [Google Scholar] [CrossRef]
- Matin, S.; Goswami, S.B. Dryland Characterization through geospatial techniques: A review. Int. J. Remote Sens. 2012, 1, 9. [Google Scholar]
- UNEP-WCMC. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands; Dataset Based on Spatial Analysis between WWF Terrestrial Ecoregions (WWF-US, 2004) and Aridity Zones (CRU/UEA.; UNEPGRID, 1991). Dataset Checked and Refined in July 2014 to Remove Many Gaps, Overlays and Slivers; World Conservation Monitoring Centre: Cambridge, UK, 2007; Available online: https://www.unep-wcmc.org/resources-and-data/a-spatial-analysis-approach-to-the-global-delineation-of-dryland-areas-of-relevance-to-the-cbd-programme-of-work-on-dry-and-subhumid-lands (accessed on 10 March 2021).
- Whitford, W.G.; Duval, B.D. Conceptual Framework, Paradigms, and Models. In Ecology of Desert Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–20. ISBN 978-0-12-815055-9. [Google Scholar]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Sayre, N.F.; McAllister, R.R.; Bestelmeyer, B.T.; Moritz, M.; Turner, M.D. Earth Stewardship of Rangelands: Coping with Ecological, Economic, and Political Marginality. Front. Ecol. Environ. 2013, 11, 348–354. [Google Scholar] [CrossRef]
- Oliva, G.; dos Santos, E.; Sofía, O.; Umaña, F.; Massara, V.; García Martínez, G.; Caruso, C.; Cariac, G.; Echevarría, D.; Fantozzi, A.; et al. The MARAS Dataset, Vegetation and Soil Characteristics of Dryland Rangelands across Patagonia. Sci. Data 2020, 7, 327. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Rasmussen, K.; Fensholt, R. Mapping Gains and Losses in Woody Vegetation across Global Tropical Drylands. Glob. Chang. Biol. 2017, 23, 1748–1760. [Google Scholar] [CrossRef]
- Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.; Kéfi, S.; Le Bagousse-Pinguet, Y.; et al. Biogeography of Global Drylands. New Phytol. 2021, 231, 540–558. [Google Scholar] [CrossRef] [PubMed]
- Scogings, P.F.; Sankaran, M. Woody Plants and Large Herbivores in Savannas: Ancient Past—Uncertain Future. In Savanna Woody Plants and Large Herbivores; Scogings, P.F., Sankaran, M., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 683–712. ISBN 978-1-119-08110-4. [Google Scholar]
- Huber, O.; Stefano, R.D.; Aymard, G.; Riina, R. Flora and Vegetation of the Venezuelan Llanos: A Review. In Neotropical Savannas and Seasonally Dry Forests; CRC Press: Boca Raton, FL, USA, 2006; p. 26. ISBN 978-0-429-12425-9. [Google Scholar]
- Guida-Johnson, B.; Zuleta, G.A. Land-Use Land-Cover Change and Ecosystem Loss in the Espinal Ecoregion, Argentina. Agric. Ecosyst. Environ. 2013, 181, 31–40. [Google Scholar] [CrossRef]
- Maliva, R.; Missimer, T. Aridity and Drought. In Arid Lands Water Evaluation and Management; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–39. ISBN 978-3-642-29103-6. [Google Scholar]
- Sörensen, L. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programma of Work on Dry and Subhumid Lands; UNEP-WCMC: Cambridge, UK, 2007. [Google Scholar]
- Hofmann, G.S.; Cardoso, M.F.; Alves, R.J.V.; Weber, E.J.; Barbosa, A.A.; Toledo, P.M.; Pontual, F.B.; Salles, L.d.O.; Hasenack, H.; Cordeiro, J.L.P.; et al. The Brazilian Cerrado Is Becoming Hotter and Drier. Glob. Chang. Biol. 2021, 27, 4060–4073. [Google Scholar] [CrossRef]
- Alves, L.M.; Chadwick, R.; Moise, A.; Brown, J.; Marengo, J.A. Assessment of Rainfall Variability and Future Change in Brazil across Multiple Timescales. Int. J. Clim. 2021, 41, E1875–E1888. [Google Scholar] [CrossRef]
- Coe, M.T.; Brando, P.M.; Deegan, L.A.; Macedo, M.N.; Neill, C.; Silvério, D.V. The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future. Trop. Conserv. Sci. 2017, 10, 194008291772067. [Google Scholar] [CrossRef] [Green Version]
- Küchler, A.W. International Bibliography of Vegetation Maps, 2nd ed.; Library Series; University of Kansas: Lawrence, KS, USA, 1980. [Google Scholar]
- Hojas-Gascon, L.; Eva, H.D.; Gobron, N.; Simonetti, D.; Fritz, S. The Application of Medium-Resolution MERIS Satellite Data for Continental Land-Cover Mapping over South America: Results and Caveats. In Remote Sensing of Land Use and Land Cover—Principles and Applications; Giri, C.P., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 325–338. ISBN 978-1-4200-7074-3. [Google Scholar]
- Hansen, M.C.; Reed, B. A Comparison of the IGBP DISCover and University of Maryland 1 Km Global Land Cover Products. Int. J. Remote Sens. 2000, 21, 1365–1373. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, J.; Gong, P. Improving 30 m Global Land-Cover Map FROM-GLC with Time Series MODIS and Auxiliary Data Sets: A Segmentation-Based Approach. Int. J. Remote Sens. 2013, 34, 5851–5867. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Tateishi, R.; Uriyangqai, B.; Al-Bilbisi, H.; Ghar, M.A.; Tsend-Ayush, J.; Kobayashi, T.; Kasimu, A.; Hoan, N.T.; Shalaby, A.; Alsaaideh, B.; et al. Production of Global Land Cover Data—GLCNMO. Int. J. Digit. Earth 2011, 4, 22–49. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L.; et al. GlobCover: ESA Service for Global Land Cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; pp. 2412–2415. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Defries, R.S.; Townshend, J.R.G. NDVI-Derived Land Cover Classifications at a Global Scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 Km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Eva, H.D.; Belward, A.S.; De Miranda, E.E.; Di Bella, C.M.; Gond, V.; Huber, O.; Jones, S.; Sgrenzaroli, M.; Fritz, S. A Land Cover Map of South America: A land cover map of South America. Glob. Chang. Biol. 2004, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Blanco, P.D.; Colditz, R.R.; López Saldaña, G.; Hardtke, L.A.; Llamas, R.M.; Mari, N.A.; Fischer, A.; Caride, C.; Aceñolaza, P.G.; del Valle, H.F.; et al. A Land Cover Map of Latin America and the Caribbean in the Framework of the SERENA Project. Remote Sens. Environ. 2013, 132, 13–31. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M.; Riner, G. Land Change for All Municipalities in Latin America and the Caribbean Assessed from 250-m MODIS Imagery (2001–2010). Remote Sens. Environ. 2012, 126, 84–103. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Justice, C.O.; Kalb, V. Characterization and Classification of South American Land Cover Types Using Satellite Data. Int. J. Remote Sens. 1987, 8, 1189–1207. [Google Scholar] [CrossRef]
- Giri, C.; Long, J. Land Cover Characterization and Mapping of South America for the Year 2010 Using Landsat 30 m Satellite Data. Remote Sens. 2014, 6, 9494–9510. [Google Scholar] [CrossRef] [Green Version]
- Stone, T.A.; Schlesinger, P.; Houghton, R.A.; Woodwell, G.M. A Map of the Vegetation of South America Based on Satellite Imagery. Photogramm. Eng. Remote Sens. 1994, 60, 12. [Google Scholar]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C.; Cassol, H.L.G.; Sano, E.E.; Hoffmann, T.B. Discriminating Land Use and Land Cover Classes in Brazil Based on the Annual PROBA-V 100 m Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3409–3420. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed Dynamic Land Cover Mapping of Chile: Accuracy Improvement by Integrating Multi-Temporal Data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M.; Grau, H.R.; Riner, G. A Scalable Approach to Mapping Annual Land Cover at 250 m Using MODIS Time Series Data: A Case Study in the Dry Chaco Ecoregion of South America. Remote Sens. Environ. 2010, 114, 2816–2832. [Google Scholar] [CrossRef]
- Caldas, M.M.; Goodin, D.; Sherwood, S.; Campos Krauer, J.M.; Wisely, S.M. Land-Cover Change in the Paraguayan Chaco: 2000–2011. J. Land Use Sci. 2015, 10, 1–18. [Google Scholar] [CrossRef]
- Da Vieira, R.M.; do Cunha, A.P.M.A.; dos Alvalá, R.C.S.; Carvalho, V.C.; Ferraz Neto, S.; Sestini, M.F. Land Use and Land Cover Map of a Semiarid Region of Brazil for Meteorological and Climatic Models. Rev. Bras. Meteorol. 2013, 28, 129–138. [Google Scholar] [CrossRef]
- Schulz, J.J.; Cayuela, L.; Echeverria, C.; Salas, J.; Rey Benayas, J.M. Monitoring Land Cover Change of the Dryland Forest Landscape of Central Chile (1975–2008). Appl. Geogr. 2010, 30, 436–447. [Google Scholar] [CrossRef] [Green Version]
- Chacón-Moreno, E.J. Mapping Savanna Ecosystems of the Llanos Del Orinoco Using Multitemporal NOAA Satellite Imagery. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, K.R.; Queiroz, G.R.; Vinhas, L.; Marujo, R.F.B.; Simoes, R.E.O.; Picoli, M.C.A.; Camara, G.; Cartaxo, R.; Gomes, V.C.F.; Santos, L.A.; et al. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sens. 2020, 12, 4033. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, X.; Fu, D.; Dong, J.; Xiao, X. Automatic Land Cover Classification of Geo-Tagged Field Photos by Deep Learning. Environ. Model. Softw. 2017, 91, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Holloway-Brown, J.; Helmstedt, K.J.; Mengersen, K.L. Spatial Random Forest (S-RF): A Random Forest Approach for Spatially Interpolating Missing Land-Cover Data with Multiple Classes. Int. J. Remote Sens. 2021, 42, 3756–3776. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Q.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA SP-351; NASA: Washington, DC, USA, 1974; pp. 309–317.
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A Review on Reflective Remote Sensing and Data Assimilation Techniques for Enhanced Agroecosystem Modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Trodd, N.M.; Dougill, A.J. Monitoring Vegetation Dynamics in Semi-Arid African Rangelands. Appl. Geogr. 1998, 18, 315–330. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Ponzoni, F.J. Spectral Mixture for Remote Sensing: Linear Model and Applications; Springer Remote Sensing/Photogrammetry; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-02016-3. [Google Scholar]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-05272-9. [Google Scholar]
- UNCCD. The Global Land Outlook; United Nations Convention to Combat Desertification: Bonn, Germany, 2017. [Google Scholar]
- Prince, S.D. Where Does Desertification Occur? Mapping Dryland Degradation at Regional to Global Scales. In The End of Desertification? Disputing Environmental Change in the Drylands; Behnke, R., Mortimore, M., Eds.; Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 978-3-642-16013-4. [Google Scholar]
- Verón, S.R.; Blanco, L.J.; Texeira, M.A.; Irisarri, J.G.N.; Paruelo, J.M. Desertification and Ecosystem Services Supply: The Case of the Arid Chaco of South America. J. Arid Environ. 2018, 159, 66–74. [Google Scholar] [CrossRef]
- Bisigato, A.J.; Laphitz, R.M.L. Ecohydrological Effects of Grazing-Induced Degradation in the Patagonian Monte, Argentina. Austral. Ecol. 2009, 34, 545–557. [Google Scholar] [CrossRef]
- Sommer, S.; Zucca, C.; Grainger, A.; Cherlet, M.; Zougmore, R.; Sokona, Y.; Hill, J.; Della Peruta, R.; Roehrig, J.; Wang, G. Application of Indicator Systems for Monitoring and Assessment of Desertification from National to Global Scales. Land Degrad. Dev. 2011, 22, 184–197. [Google Scholar] [CrossRef]
- Zucca, C.; Peruta, R.D.; Salvia, R.; Sommer, S.; Cherlet, M. Towards a World Desertification Atlas. Relating and Selecting Indicators and Data Sets to Represent Complex Issues. Ecol. Indic. 2012, 15, 157–170. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Holm, A. The Use of Time-Integrated NOAA NDVI Data and Rainfall to Assess Landscape Degradation in the Arid Shrubland of Western Australia. Remote Sens. Environ. 2003, 85, 145–158. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.F.; Reynolds, J.F.; Hill, J.; Sommer, S.; Von Maltitz, G.; Europäische Kommission (Eds.) World Atlas of Desertification: Rethinking Land Degradation and Sustainable Land Management, 3rd ed.; Publication Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-75350-3. [Google Scholar]
- Bernardino, P.N.; De Keersmaecker, W.; Fensholt, R.; Verbesselt, J.; Somers, B.; Horion, S. Global-scale Characterization of Turning Points in Arid and Semi-arid Ecosystem Functioning. Glob. Ecol. Biogeogr. 2020, 29, 1230–1245. [Google Scholar] [CrossRef] [Green Version]
- Dregne, H.E. Land Degradation in the Drylands. Arid Land Res. Manag. 2002, 16, 99–132. [Google Scholar] [CrossRef]
- Arabameri, A.; Cerda, A.; Rodrigo-Comino, J.; Pradhan, B.; Sohrabi, M.; Blaschke, T.; Tien Bui, D. Bui Proposing a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-Arid Regions (Iran). Remote Sens. 2019, 11, 2577. [Google Scholar] [CrossRef] [Green Version]
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yu, H.; Dai, A.; Wei, Y.; Kang, L. Drylands Face Potential Threat under 2 °C Global Warming Target. Nat. Clim. Chang. 2017, 7, 417–422. [Google Scholar] [CrossRef]
- Metternicht, G.; Zinck, J.A.; Blanco, P.D.; del Valle, H.F. Remote Sensing of Land Degradation: Experiences from Latin America and the Caribbean. J. Environ. Qual. 2010, 39, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Salmon, J.M. Mapping the World’s Degraded Lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; et al. Impacts of 1.5 °C of Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strenghtening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; p. 138. [Google Scholar]
- Vera, C.; Silvestri, G.; Liebmann, B.; González, P. Climate Change Scenarios for Seasonal Precipitation in South America from IPCC-AR4 Models. Geophys. Res. Lett. 2006, 33, L13707. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Sörensen, L.; Trux, A.; Duchrow, A. Sustainable Land Management in Drylands—Challenges for Adaptation to Climate Change. In The Nature of Drylands: Diverse Ecosystems, Diverse Solutions; IUCN—International Union for Conservation of Nature: Nairobi, Kenya, 2008. [Google Scholar]
- GCOS. Global Climate Observing System Systematic Observation Requirements for Satellite-Based Data Products for Climate: 2011; Update 2011; World Meteorological Organization: Geneva, Switzerland, 2011; Available online: https://climate.esa.int/sites/default/files/gcos-154.pdf (accessed on 10 September 2021).
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland Climate Change: Recent Progress and Challenges: Dryland Climate Change. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R. A Remote Sensing Based Vegetation Classification Logic for Global Land Cover Analysis. Remote Sens. Environ. 1995, 51, 39–48. [Google Scholar] [CrossRef]
- Vaughan, N.E.; Lenton, T.M. A Review of Climate Geoengineering Proposals. Clim. Chang. 2011, 109, 745–790. [Google Scholar] [CrossRef]
- Nadal, G.H.; Bravo, G.; Girardin, L.O.; Gortari, S. Can Renewable Energy Technologies Improve the Management of Stressed Water Resources Threatened by Climate Change? Argentine Drylands Case Study. Environ. Dev. Sustain. 2013, 15, 1079–1097. [Google Scholar] [CrossRef]
- Hamada, Y.; Grippo, M.A. Remote-Sensing Application for Facilitating Land Resource Assessment and Monitoring for Utility-Scale Solar Energy Development. J. Appl. Remote Sens. 2015, 9, 097694. [Google Scholar] [CrossRef] [Green Version]
- Romero-Ruiz, M.; Etter, A.; Sarmiento, A.; Tansey, K. Spatial and Temporal Variability of Fires in Relation to Ecosystems, Land Tenure and Rainfall in Savannas of Northern South America: Spatial and temporal variability of fires. Glob. Chang. Biol. 2010, 16, 2013–2023. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Gimenez, A.; Moglia, G. Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina. Int. J. Wildland Fire 2001, 10, 65. [Google Scholar] [CrossRef]
- Mamede, M.d.A.; de Araújo, F.S. Effects of Slash and Burn Practices on a Soil Seed Bank of Caatinga Vegetation in Northeastern Brazil. J. Arid Environ. 2008, 72, 458–470. [Google Scholar] [CrossRef]
- Kitzberger, T.; Perry, G.; Paritsis, J.; Gowda, J.; Tepley, A.; Holz, A.; Veblen, T. Fire–Vegetation Feedbacks and Alternative States: Common Mechanisms of Temperate Forest Vulnerability to Fire in Southern South America and New Zealand. N. Z. J. Bot. 2016, 54, 247–272. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Nami, M.H.; Jaafari, A.; Fallah, M.; Nabiuni, S. Spatial Prediction of Wildfire Probability in the Hyrcanian Ecoregion Using Evidential Belief Function Model and GIS. Int. J. Environ. Sci. Technol. 2018, 15, 373–384. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Burton, C.; Reis, J.B.C.; Pessôa, A.C.M.; Bett, P.; Carvalho, N.S.; Selaya, G.; Jones, C.; Rivera-Lombardi, R.; Aragão, L.E.O.C.; et al. Fire Probability in South. American Protected Areas, Brazilian Settlements and Rural Properties in the Brazilian Amazon: December 2020 to February 2021; Newton Fund CSSP-Brazil: São José dos Campos, Brazil, 2020; p. 32. [Google Scholar]
- Barreto, J.S.; Armenteras, D. Open Data and Machine Learning to Model the Occurrence of Fire in the Ecoregion of “Llanos Colombo–Venezolanos”. Remote Sens. 2020, 12, 3921. [Google Scholar] [CrossRef]
- Fischer, M.A.; Di Bella, C.M.; Jobbágy, E.G. Fire Patterns in Central Semiarid Argentina. J. Arid Environ. 2012, 78, 161–168. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Grau, R.; Aráoz, E. Fire–Rainfall Relationships in Argentine Chaco Savannas. J. Arid Environ. 2010, 74, 1319–1323. [Google Scholar] [CrossRef]
- Pivello, V.R.; Vieira, I.; Christianini, A.V.; Ribeiro, D.B.; da Silva Menezes, L.; Berlinck, C.N.; Melo, F.P.L.; Marengo, J.A.; Tornquist, C.G.; Tomas, W.M.; et al. Understanding Brazil’s Catastrophic Fires: Causes, Consequences and Policy Needed to Prevent Future Tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Jobbágy, E.G.; Paruelo, J.M.; Pinnock, S. Continental Fire Density Patterns in South America: Fires in South America. Glob. Ecol. Biogeogr. 2006, 15, 192–199. [Google Scholar] [CrossRef]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; et al. Generation and Analysis of a New Global Burned Area Product Based on MODIS 250 m Reflectance Bands and Thermal Anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century Drought-Related Fires Counteract the Decline of Amazon Deforestation Carbon Emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental Change and the Carbon Balance of Amazonian Forests: Environmental Change in Amazonia. Biol Rev. 2014, 89, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, E.; Pereira, J.M.C.; Gregoire, J.-M.; DaCamara, C.C. Characterization of the Spatio-Temporal Patterns of Global Fire Activity Using Satellite Imagery for the Period April 1992 to March 1993. J. Biogeogr. 2000, 27, 57–69. [Google Scholar] [CrossRef]
- Briess, K.; Jahn, H.; Lorenz, E.; Oertel, D.; Skrbek, W.; Zhukov, B. Fire Recognition Potential of the Bi-Spectral Infrared Detection (BIRD) Satellite. Int. J. Remote Sens. 2003, 24, 865–872. [Google Scholar] [CrossRef]
- Oliva, P.; Martín, P.; Chuvieco, E. Burned Area Mapping with MERIS Post-Fire Image. Int. J. Remote Sens. 2011, 32, 4175–4201. [Google Scholar] [CrossRef]
- Eva, H.; Lambin, E.F. Burnt Area Mapping in Central Africa Using ATSR Data. Int. J. Remote Sens. 1998, 19, 3473–3497. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS Fire Products. Remote. Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote. Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing a Earth Observation Product Service For The Terrestrial Carbon Community: The Globcarbon Initiative. Mitig Adapt. Strat Glob. Chang. 2006, 11, 97–111. [Google Scholar] [CrossRef]
- Tansey, K.; Grégoire, J.-M.; Defourny, P.; Leigh, R.; Pekel, J.-F.; van Bogaert, E.; Bartholomé, E. A New, Global, Multi-Annual (2000–2007) Burnt Area Product at 1 Km Resolution. Geophys. Res. Lett. 2008, 35, L01401. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- MapBiomas. Fogo Algorithm Theoretical Basis Document (ATDB): MapBiomas Fire Collection 1.0. 2020. Available online: https://mapbiomas-br-site.s3.amazonaws.com/ATBD_MapBiomas_Fogo_Coleção_1.pdf (accessed on 9 September 2021).
- Drüke, M.; Forkel, M.; von Bloh, W.; Sakschewski, B.; Cardoso, M.; Bustamante, M.; Kurths, J.; Thonicke, K. Improving the LPJmL4-SPITFIRE Vegetation–Fire Model for South America Using Satellite Data. Geosci. Model. Dev. 2019, 12, 5029–5054. [Google Scholar] [CrossRef] [Green Version]
- Giorgis, M.A.; Zeballos, S.R.; Carbone, L.; Zimmermann, H.; von Wehrden, H.; Aguilar, R.; Ferreras, A.E.; Tecco, P.A.; Kowaljow, E.; Barri, F.; et al. A Review of Fire Effects across South American Ecosystems: The Role of Climate and Time since Fire. Fire Ecol. 2021, 17, 11. [Google Scholar] [CrossRef]
- Cavallero, L.; López, D.R.; Raffaele, E.; Aizen, M.A. Structural–Functional Approach to Identify Post-Disturbance Recovery Indicators in Forests from Northwestern Patagonia: A Tool to Prevent State Transitions. Ecol. Indic. 2015, 52, 85–95. [Google Scholar] [CrossRef]
- Doherty, T.S.; van Etten, E.J.B.; Davis, R.A.; Knuckey, C.; Radford, J.Q.; Dalgleish, S.A. Ecosystem Responses to Fire: Identifying Cross-Taxa Contrasts and Complementarities to Inform Management Strategies. Ecosystems 2017, 20, 872–884. [Google Scholar] [CrossRef]
- White, R.P.; Nackoney, J. Drylands, People, and Ecosystem Goods and Services: A Web-Based Geospatial Analysis; World Resources Institute: Washington, DC, USA, 2003; p. 58. [Google Scholar]
- Silva, J.M.C.D.; Leal, I.R.; Tabarelli, M. (Eds.) Caatinga; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-68338-6. [Google Scholar]
- Zhang, J.; Guo, W.; Zhou, B.; Okin, G.S. Drone-Based Remote Sensing for Research on Wind Erosion in Drylands: Possible Applications. Remote Sens. 2021, 13, 283. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, J.; He, C.; Ding, G. Linking Wind Erosion to Ecosystem Services in Drylands: A Landscape Ecological Approach. Landsc. Ecol. 2017, 32, 2399–2417. [Google Scholar] [CrossRef]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of Remote Sensing Indicators to Assess Effects of Drought and Human-Induced Land Degradation on Ecosystem Health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.; Kenawy, A. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.; Wang, S.; Liu, Y.; Hua, T.; Zhang, J.; Xue, F.; Fu, B. Quantifying Responses of Net Primary Productivity to Agricultural Expansion in Drylands. Land Degrad Dev. 2021, 32, 2050–2060. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.B.; Jafari, M.; Lissner, T.K.; Stevens, N.; Tirado-von der Pahlen, C. Climate Change Impacts on Water Security in Global Drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Rubio, M.C.; Sales, R.; Abraham, E.; Rubio, M.F.; Díaz, F.; Rubio, C. Land Use Planning in Drylands: Participatory Processes in Diagnosing the Physical-Biological Subsystem. Appl. Spat. Anal. 2021, 14, 197–220. [Google Scholar] [CrossRef]
- García, C.L.; Teich, I.; Gonzalez-Roglich, M.; Kindgard, A.F.; Ravelo, A.C.; Liniger, H. Land Degradation Assessment in the Argentinean Puna: Comparing Expert Knowledge with Satellite-Derived Information. Environ. Sci. Policy 2019, 91, 70–80. [Google Scholar] [CrossRef]
- Asner, G.P.; Heidebrecht, K.B. Imaging Spectroscopy for Desertification Studies: Comparing Aviris and Eo-1 Hyperion in Argentina Drylands. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1283–1296. [Google Scholar] [CrossRef]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote Sensing of Vegetation Dynamics in Drylands: Evaluating Vegetation Optical Depth (VOD) Using AVHRR NDVI and in Situ Green Biomass Data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.Org: The Use of Crowdsourcing to Improve Global Land Cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; van der Velde, M.; Kraxner, F.; Obersteiner, M. Geo-Wiki: An Online Platform for Improving Global Land Cover. Environ. Model. Softw. 2012, 31, 110–123. [Google Scholar] [CrossRef]
- Xiao, X.; Dorovskoy, P.; Biradar, C.; Bridge, E. A Library of Georeferenced Photos from the Field. Eos Trans. AGU 2011, 92, 453–454. [Google Scholar] [CrossRef]
- Esquerdo, J.C.D.M.; Antunes, J.F.G.; Coutinho, A.C.; Speranza, E.A.; Kondo, A.A.; dos Santos, J.L. SATVeg: A Web-Based Tool for Visualization of MODIS Vegetation Indices in South America. Comput. Electron. Agric. 2020, 175, 105516. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some Challenges in Global Land Cover Mapping: An Assessment of Agreement and Accuracy in Existing 1 Km Datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Pastick, N.; Wylie, B.; Wu, Z. Spatiotemporal Analysis of Landsat-8 and Sentinel-2 Data to Support Monitoring of Dryland Ecosystems. Remote Sens. 2018, 10, 791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From Woody Cover to Woody Canopies: How Sentinel-1 and Sentinel-2 Data Advance the Mapping of Woody Plants in Savannas. Remote Sens. Environ. 2019, 234, 111465. [Google Scholar] [CrossRef]
- Symeonakis, E.; Higginbottom, T.; Petroulaki, K.; Rabe, A. Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data. Remote Sens. 2018, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Gomes, V.; Queiroz, G.; Ferreira, K. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Asmaryan, S.; Muradyan, V.; Tepanosyan, G.; Hovsepyan, A.; Saghatelyan, A.; Astsatryan, H.; Grigoryan, H.; Abrahamyan, R.; Guigoz, Y.; Giuliani, G. Paving the Way towards an Armenian Data Cube. Data 2019, 4, 117. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and Lessons Learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; De Bono, A.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons Learned from the Swiss Data Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Alberton, B.; Torres, R.d.S.; Cancian, L.F.; Borges, B.D.; Almeida, J.; Mariano, G.C.; Santos, J.d.; Morellato, L.P.C. Introducing Digital Cameras to Monitor Plant Phenology in the Tropics: Applications for Conservation. Perspect. Ecol. Conserv. 2017, 15, 82–90. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.; Leite, P.T.P.; et al. Linking Plant Phenology to Conservation Biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Browning, D.; Karl, J.; Morin, D.; Richardson, A.; Tweedie, C. Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sens. 2017, 9, 1071. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Scott, R.L.; Moore, D.J.P.; Biederman, J.A.; Smith, W.K. Understanding the Relationship between Vegetation Greenness and Productivity across Dryland Ecosystems through the Integration of PhenoCam, Satellite, and Eddy Covariance Data. Remote Sens. Environ. 2019, 223, 50–62. [Google Scholar] [CrossRef]
- Alberton, B.; da Silva Torres, R.; Sanna Freire Silva, T.; Rocha, H.; Moura, M.S.B.; Morellato, L. Leafing Patterns and Drivers across Seasonally Dry Tropical Communities. Remote Sens. 2019, 11, 2267. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Matongera, T.N.; Mutanga, O.; Sibanda, M.; Odindi, J. Estimating and Monitoring Land Surface Phenology in Rangelands: A Review of Progress and Challenges. Remote Sens. 2021, 13, 2060. [Google Scholar] [CrossRef]
- Reiss, J.; Bridle, J.R.; Montoya, J.M.; Woodward, G. Emerging Horizons in Biodiversity and Ecosystem Functioning Research. Trends Ecol. Evol. 2009, 24, 505–514. [Google Scholar] [CrossRef]
Country | Total Drylands (%) | ||
---|---|---|---|
Country-Level | South American Level | Global Level | |
Argentina | 79.83 | 12.50 | 1.51 |
Paraguay | 53.32 | 1.20 | 0.15 |
Chile | 48.43 | 2.07 | 0.25 |
Bolivia | 47.71 | 2.92 | 0.35 |
Peru | 27.79 | 2.03 | 0.25 |
Ecuador | 18.32 | 0.27 | 0.03 |
Venezuela | 15.53 | 0.80 | 0.10 |
Brazil | 13.99 | 6.72 | 0.81 |
Colombia | 2.95 | 0.19 | 0.02 |
Guyana | 0.17 | <0.01 | <0.01 |
Uruguay | 0.11 | <0.01 | <0.01 |
Country | Formation Type | Ecoregion |
---|---|---|
Argentina | Montane Grasslands and Shrublands | High Monte |
Temperate Grassland, Savanna, and Shrubland | Low Monte | |
Bolivia | Montane Grasslands & Shrublands | Central Andean Dry Puna |
Tropical and Subtropical Dry Broadleaf Forests | Bolivian Montane | |
Chile | Forest, Woodland, and Scrub | Matorral |
Colombia | Montane Grasslands and Shrublands | Santa Marta Páramo |
Tropical and Subtropical Dry Broadleaf Forests | Sinú-Valley | |
Xeric Shrubland | Guajira-Barranquilla | |
Ecuador | Montane Grasslands and Shrublands | Montane Andean Páramo |
Xeric Shrubland | Galápagos Islands | |
Peru | Desert | Sechura |
Montane Grasslands and Shrublands | Central Andean Puna | |
Tropical and Subtropical Dry Broadleaf Forests | Tumbes-Piura | |
Venezuela | Tropical and Subtropical Dry Broadleaf Forests | Apure-Villavicencio |
Lara-Falcón | ||
Maracaibo | ||
Xeric Shrubland | Araya and Paria | |
La Costa | ||
Paranaguá |
Dryland LULC Mapping Component | Pioneers (Late 1980’s and 1990’s) | Early Incursions (2000’s) | Contemporary Initiatives (2010’s until 2020) | Emerging Horizons | |
---|---|---|---|---|---|
Advancements | Advancements | Advancements | Main Challenges | Trends and Future Directions | |
Scale | First large scale (global and continental) maps. | Large-scale (global and continental) maps still prevail; first regional initiative. | Profusion of new mapping initiatives at all scales. | Few regional studies and small ecoregions have been underrepresented. | Multi-institutional cooperation agreements and funds to expand mapping initiatives in underrepresented regions. |
Datasets | Coarse-resolution (1km) AVHRR. | Mapping sources were expanded to include MODIS (1km) and MERIS (300 m); first time-series annual mapping initiative using MODIS (MLCT). | Landsat became free and prompted the upsurge of medium resolution (30m) maps, emerging as the main mapping dataset (including in global maps); first time-series annual mapping initiative using Landsat (MapBiomas). | Minimize temporal divergences between the environmental process and observation scales. | Time-series analysis and satellite data integration to create RS-based data cubes; data fusion of medium and high-resolution images; maps using SAR images; combination of Sentinel-1 and Sentinel-2 for higher detail level; hyperspectral images to facilitate using in situ data for training algorithms; assessment of phenological cycles through UAVs and phenology networks. |
Classification techniques | Unsupervised classification (Mahalanobis distance). | Mostly unsupervised classification with different algorithms and a few supervised ones (random forest and decision tree). | Supervised classification mainly was used, more frequently random forest, which can improve vegetation classification accuracy and control over-fitting. | Reliable training data, removing the strong spectral mixing, capturing the heterogeneity of drylands in many scales. | High-performance computing and machine learning to produce maps with high temporal frequency and detail level; web-based tools to access temporal profiles of vegetation indices; unmixing methods. |
Classification legends | Homogenous representation of vegetation distribution in global maps. | The general trend of homogenous representation of vegetation distribution in global maps was kept. | Country-level and regional maps increased, but some insufficiently represented the ecosystem heterogeneity with a level of detail. | Incompatible and unstandardized legends; appropriate representation of vegetation formations. | Readily available datasets of vegetation characteristics; classification keys targeting drylands; incorporation of regional knowledge. |
Validation techniques | Overall agreement, reliability ratings, and visual comparison. | Confusion matrix stood out, effectively identifying potential error sources; sampling approaches varied between simple and stratified random distribution; one initiative (ULA-Llanos del Orinoco) used fieldwork samples. | Confusion matrix remained the primary technique; data collection included visual interpretation of high-resolution images, field photos from Google Earth, and fieldwork samples (in a few initiatives). | Limited availability of ground-based data to calibrate and validate algorithms. | Crowd-sourced field photos databases to collect geo-referenced images from different researchers; integrated permanent field monitoring plots networks. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganem, K.A.; Xue, Y.; Rodrigues, A.d.A.; Franca-Rocha, W.; Oliveira, M.T.d.; Carvalho, N.S.d.; Cayo, E.Y.T.; Rosa, M.R.; Dutra, A.C.; Shimabukuro, Y.E. Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sens. 2022, 14, 736. https://doi.org/10.3390/rs14030736
Ganem KA, Xue Y, Rodrigues AdA, Franca-Rocha W, Oliveira MTd, Carvalho NSd, Cayo EYT, Rosa MR, Dutra AC, Shimabukuro YE. Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sensing. 2022; 14(3):736. https://doi.org/10.3390/rs14030736
Chicago/Turabian StyleGanem, Khalil Ali, Yongkang Xue, Ariane de Almeida Rodrigues, Washington Franca-Rocha, Marceli Terra de Oliveira, Nathália Silva de Carvalho, Efrain Yury Turpo Cayo, Marcos Reis Rosa, Andeise Cerqueira Dutra, and Yosio Edemir Shimabukuro. 2022. "Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges" Remote Sensing 14, no. 3: 736. https://doi.org/10.3390/rs14030736
APA StyleGanem, K. A., Xue, Y., Rodrigues, A. d. A., Franca-Rocha, W., Oliveira, M. T. d., Carvalho, N. S. d., Cayo, E. Y. T., Rosa, M. R., Dutra, A. C., & Shimabukuro, Y. E. (2022). Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sensing, 14(3), 736. https://doi.org/10.3390/rs14030736