Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation
<p>Satellite videos. (<b>a</b>) small object size is about 10 × 12 pixels. (<b>b</b>) the moving object is occluded. (<b>c</b>) the object is similar to its background.</p> "> Figure 2
<p>Flowchart of the proposed algorithm. CF and AKF are the abbreviations of correlation filter and adaptive Kalman filter. The Euclidean distance is the object center position of adjacent frames.</p> "> Figure 3
<p>Feature visualization of various layers from the VGG-19 Networks. (<b>a</b>) Input image. (<b>b</b>) Conv2-3 layer features. (<b>c</b>) Conv3-4 layer features. (<b>d</b>) Conv4-4 layer features. (<b>e</b>) Conv5-4 layer features. (<b>f</b>) fused image features.</p> "> Figure 4
<p>Feature visualization of small objects. (<b>a</b>) 256 channels’ features. (<b>b</b>) first 30 features.</p> "> Figure 5
<p>The graph of feature response.</p> "> Figure 6
<p>Visualization of an object occlusion process. (<b>a</b>) not occluded object. (<b>b</b>) partially occluded object. (<b>c</b>) end of object occlusion.</p> "> Figure 7
<p>Ablation study on all the unoccluded video sequences. The legend in the precision and success plot are the precision and AUC value score per object tracker, respectively. (<b>a</b>) Precision plots; (<b>b</b>) Success plots.</p> "> Figure 8
<p>Ablation study on all the occluded video sequences. The legend in the precision and success plot are the precision and AUC value score per object tracker, respectively. (<b>a</b>) Precision plots; (<b>b</b>) Success plots.</p> "> Figure 9
<p>Distribution of the SDM value of the response patch. We can see an obvious unimodal distribution. Hence, selecting an appropriate threshold to judge occlusion and non-occlusion.</p> "> Figure 10
<p>Success plot for per threshold and the legend is the AUC per threshold.</p> "> Figure 11
<p>Visualization of some tracking results for the occluded object. The data in the parenthesis marked by upper case letters denote the current frame’s SDM value of the images with the corresponding lower case letters. (<b>a</b>) Occlusion process of Car3 sequences. (<b>b</b>) Occlusion process of Car4 sequences. (<b>c</b>) Occlusion process of Car5 sequences. (<b>d</b>) Occlusion process of Car6 sequences.</p> "> Figure 12
<p>Precision plots of eight video sequences involving object sequences without and with occlusion. The legend in the precision plot is the corresponding precision score per object tracker.</p> "> Figure 13
<p>Success plots of eight video sequences involving object sequences without and with occlusion. The legend in the success plot presents the corresponding AUC per object tracker.</p> "> Figure 14
<p>Screenshots of some tracking results without occlusion. At each frame, the bounding boxes with different colors are the tracking results of the different trackers and the red number in the top-left corner is the frame number of the current frame in the satellite videos.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Feature Fusion
2.2. Subpixel Positioning Method
2.3. Motion Trajectory Compensation
2.4. Solution for Object Occlusion
3. Experiments
3.1. Video Datasets and Compared Algorithms
Algorithm 1 The proposed tracking scheme |
Input: frames: video datasets. T: number of processed frames. FT: current frame T. PT−1: the object position of frame T − 1. |
Output: PT: the current frame object position. |
Selcct the region of interest (ROI) and set the position of first frame. Set the occlusion threshold Th. for i in range (len(frames)): if i == 1: (first frame) Initialize the KCF tracker, VGG network, and Kalman filter. FHOG: extract HOG features. FVGG: VGG features selection and enhancement. PT: the position of current frame. else: Crop image patch from frames [i] according to PT. Fuse-response: Fusion strategy for feature (FHOG, FVGG) responses. Ppeak: the position of the max fuse-response. SDM: Calculate the SDM to detect occlusion. if SDM > Th: /* the object is unoccluded */ Psub-peak: Subpixel location for Ppeak. Pfinal: Motion trajectory compensation and correction. else: Pfinal: The object position obtained by Kalman filter. PT ← Pfinal return PT break |
3.2. Parameters Setting
3.3. Evaluation Metrics
4. Results and Analysis
4.1. Ablation Study
4.2. Object Occlusion Analysis
4.3. Tracking Result Analysis
4.3.1. Quantitative Evaluation
4.3.2. Qualitative Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. 2006, 38, 1–45. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S.; Liu, C.; Pan, C. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Kopsiaftis, G.; Karantzalos, K. Vehicle detection and traffic density monitoring from very high resolution satellite video data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1881–1884. [Google Scholar]
- Yang, T.; Wang, X.; Yao, B.; Li, J.; Zhang, Y.; He, Z.; Duan, W. Small Moving Vehicle Detection in a Satellite Video of an urban Area. Sensors 2016, 16, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, J.; Du, B.; Wu, C.; Zhang, L. Tracking Objects from Satellite Videos: A Velocity Feature Based Correlation Filter. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7860–7871. [Google Scholar] [CrossRef]
- Shao, J.; Du, B.; Wu, C.; Zhang, L. Can We Track Targets from Space? A Hybrid Kernel Correlation Filter Tracker for Satellite Video. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8719–8731. [Google Scholar] [CrossRef]
- Du, B.; Sun, Y.; Cai, S.; Wu, C.; Du, Q. Object Tracking in Satellite Videos by Fusing the Kernel Correlation Filter and the Three-Frame-Difference Algorithm. IEEE Geosci. Remote Sens. Lett. 2017, 15, 168–172. [Google Scholar] [CrossRef]
- Guo, J.; Yang, D.; Chen, Z. Object Tracking on Satellite Videos: A Correlation Filter-Based Tracking Method with Trajectory Correlation by Kalman Filter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3538–3551. [Google Scholar] [CrossRef]
- Xuan, S.; Li, S.; Han, M.; Wan, X.; Xia, G. Tracking in Satellite Videos by Improved Correlation Filters with Motion Estimations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1074–1086. [Google Scholar] [CrossRef]
- Bolme, D.; Beveridge, J.; Draper, B.; Lui, Y. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Henriques, J.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In Proceedings of the 2012 IEEE Conference on European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 702–715. [Google Scholar]
- Henriques, J.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Fang, J.; Yuan, Y. Multi-cue based tracking. Neurocomputing 2014, 131, 227–236. [Google Scholar] [CrossRef]
- Yin, Z.; Collins, R. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Du, S.; Wang, S. An Overview of Correlation-Filter-Based Object Tracking. IEEE Trans. Comput. Soc. Syst. 2022, 9, 18–31. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, W.; Xing, W.; Zhang, L. Learning Scale-Adaptive Tight Correlation Filter for Object Tracking. IEEE Trans. Cybern. 2020, 50, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In Proceedings of the 2015 IEEE Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Danelljan, M.; Robinson, A.; Khan, F.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In Proceedings of the 2016 IEEE Conference on European Conference on Computer Vision (ECCV), Zurich, Switzerland, 11–14 October 2016; pp. 472–488. [Google Scholar]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. ECO: Efficient convolution operators for tracking. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, J.; Ma, S.; Sclaroff, S. MEEM: Robust tracking via multiple experts using entropy minimization. In Proceedings of the 2014 IEEE Conference on European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 188–203. [Google Scholar]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking. In Proceedings of the 2014 British Machine Vision Conference (BMVC), Nottingham, UK, 1–5 September 2014. [Google Scholar]
- Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the 2014 IEEE Conference on European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 254–265. [Google Scholar]
- Danelljan, M.; Khan, F.; Felsberg, M.; De, J. Adaptive color attributes for real-time visual tracking. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. Convolutional features for correlation filter based visual tracking. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 621–629. [Google Scholar]
- Ma, C.; Huang, J.; Yang, X.; Yang, M. Hierarchical convolutional features for visual tracking. In Proceedings of the 2015 IEEE Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1409–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Hager, G.; Khan, F.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1561–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertinetto, L.; Valmadre, J.; Henriques, J.; Vedaldi, A.; Torr, P. Fully-convolutional Siamese network for object tracking. In Proceedings of the 2016 IEEE Conference on European Conference on Computer Vision (ECCV), Zurich, Switzerland, 11–14 October 2016. [Google Scholar]
- Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with Siamese region proposal network. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M. Online object tracking: A benchmark. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Plane1 | Plane2 | Car1 | Car2 | Car3 | Car4 | Car5 | Car6 | Average | |
---|---|---|---|---|---|---|---|---|---|
KF | 35 | 32 | 33 | 29 | 30 | 31 | 28 | 34 | 32 |
AKF | 15 | 14 | 16 | 13 | 15 | 14 | 13 | 17 | 15 |
Ours | KCF_MF | KCF_CNN | KCF_SL | KCF_AKF | KCF_KF | KCF | |
---|---|---|---|---|---|---|---|
AUC (%) | 74.1 | 73.7 | 72.7 | 71.0 | 72.1 | 71.9 | 69.1 |
Precision score (%) | 89.2 | 87.1 | 83.1 | 78.2 | 83.0 | 79.0 | 77.2 |
Success score (%) | 97.2 | 96.4 | 94.8 | 91.8 | 93.7 | 92.5 | 90.4 |
FPS | 18 | 22 | 20 | 94 | 92 | 93 | 96 |
Ours | KCF_MF | KCF_CNN | KCF_SL | KCF_AKF | KCF_KF | KCF | |
---|---|---|---|---|---|---|---|
AUC (%) | 72.6 | 45.7 | 45.6 | 38.7 | 70.9 | 67.9 | 33.5 |
Precision score (%) | 90.3 | 62.2 | 58.6 | 42.7 | 88.0 | 81.9 | 35.5 |
Success score (%) | 95.1 | 64.8 | 64.6 | 58.4 | 93.9 | 92.5 | 47.6 |
FPS | 17 | 20 | 21 | 95 | 92 | 93 | 97 |
Video Datasets | Evaluation Metrics | Ours | KCF | CSK | TLD | DSST | HCF | SiamFC | SiamRPN |
---|---|---|---|---|---|---|---|---|---|
Plane1 | AUC (%) | 79.8 | 67.6 | 62.5 | 37.5 | 68.0 | 72.0 | 70.8 | 72.8 |
Precision score (%) | 99.0 | 88.6 | 77.4 | 30.2 | 94.3 | 97.3 | 94.6 | 96.7 | |
Success score(%) | 100.0 | 86.0 | 74.0 | 25.0 | 93.0 | 97.0 | 93.0 | 94.0 | |
FPS | 14 | 95 | 106 | 13 | 76 | 21 | 16 | 13 | |
Plane2 | AUC(%) | 75.3 | 59.2 | 55.0 | 36.8 | 67.1 | 70.4 | 72.7 | 77.3 |
Precision score(%) | 82.0 | 51.0 | 49.0 | 9.0 | 64.0 | 69.0 | 73.0 | 87.0 | |
Success score(%) | 98.0 | 85.0 | 83.0 | 11.0 | 89.0 | 91.0 | 97.0 | 99.0 | |
FPS | 15 | 90 | 91 | 21 | 86 | 34 | 12 | 9 | |
Car1 | AUC(%) | 73.9 | 54.9 | 28.8 | 17.6 | 58.0 | 65.0 | 63.0 | 70.6 |
Precision score(%) | 97.3 | 83.9 | 36.0 | 21.4 | 90.1 | 85.7 | 90.2 | 94.6 | |
Success score(%) | 91.6 | 59.8 | 36.0 | 21.4 | 74.8 | 76.8 | 77.7 | 87.5 | |
FPS | 22 | 89 | 97 | 19 | 63 | 28 | 20 | 19 | |
Car2 | AUC(%) | 71.0 | 54.2 | 46.5 | 0.7 | 60.3 | 65.9 | 67.8 | 75.2 |
Precision score(%) | 89.0 | 77.0 | 54.0 | 1.0 | 83.0 | 84.0 | 87.0 | 90.0 | |
Success score(%) | 88.0 | 73.0 | 49.0 | 17.2 | 79.0 | 81.0 | 87.0 | 91.0 | |
FPS | 14 | 105 | 112 | 23 | 95 | 19 | 13 | 10 | |
Car3 | AUC(%) | 69.6 | 26.9 | 18.6 | 0.2 | 40.9 | 16.7 | 34.9 | 39.9 |
Precision score(%) | 86.3 | 21.4 | 8.2 | 0.2 | 49.1 | 0.7 | 33.6 | 52.6 | |
Success score(%) | 89.5 | 25.0 | 11.8 | 2.3 | 51.6 | 7.7 | 43.4 | 49.7 | |
FPS | 26 | 78 | 84 | 35 | 62 | 22 | 20 | 15 | |
Car4 | AUC(%) | 74.3 | 40.2 | 30.3 | 0.4 | 45.6 | 45.7 | 43.7 | 54.3 |
Precision score(%) | 86.3 | 36.9 | 35.8 | 0.4 | 54.5 | 42.9 | 54.5 | 68.7 | |
Success score(%) | 97.6 | 58.8 | 37.4 | 4.3 | 56.9 | 60.6 | 60.8 | 56.9 | |
FPS | 22 | 89 | 82 | 33 | 80 | 22 | 18 | 15 | |
Car5 | AUC(%) | 70.6 | 66.5 | 47.1 | 0.3 | 62.6 | 67.1 | 62.6 | 55.8 |
Precision score(%) | 85.2 | 77.1 | 34.6 | 0.3 | 68.8 | 73.7 | 75.5 | 67.0 | |
Success score(%) | 91.9 | 75.4 | 18.0 | 5.7 | 81.2 | 81.8 | 82.2 | 74.7 | |
FPS | 24 | 114 | 108 | 29 | 100 | 33 | 21 | 17 | |
Car6 | AUC(%) | 70.0 | 36.7 | 9.6 | 2.9 | 40.2 | 36.5 | 39.3 | 30.6 |
Precision score(%) | 90.8 | 41.8 | 8.2 | 0.4 | 47.9 | 32.4 | 47.9 | 32.0 | |
Success score(%) | 98.2 | 47.2 | 9.6 | 0.3 | 53.2 | 46.6 | 52.1 | 38.8 | |
FPS | 28 | 89 | 94 | 24 | 81 | 23 | 16 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liao, Y.; Lin, C.; Jia, Y.; Li, Z.; Yang, X. Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation. Remote Sens. 2022, 14, 777. https://doi.org/10.3390/rs14030777
Liu Y, Liao Y, Lin C, Jia Y, Li Z, Yang X. Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation. Remote Sensing. 2022; 14(3):777. https://doi.org/10.3390/rs14030777
Chicago/Turabian StyleLiu, Yaosheng, Yurong Liao, Cunbao Lin, Yutong Jia, Zhaoming Li, and Xinyan Yang. 2022. "Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation" Remote Sensing 14, no. 3: 777. https://doi.org/10.3390/rs14030777
APA StyleLiu, Y., Liao, Y., Lin, C., Jia, Y., Li, Z., & Yang, X. (2022). Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature Fusion and Motion Trajectory Compensation. Remote Sensing, 14(3), 777. https://doi.org/10.3390/rs14030777