Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data
<p>Diagram of our attitude reconstruction scheme. Box in dark yellow represents the SC processing, and box in cyan represents the IMU processing. The stage of data fusion is marked in black.</p> "> Figure 2
<p>An example (5 December 2018 Sat-C IMU-3) of angular rate computation. (<b>a</b>) is the angular rate result computed with POST method. (<b>b</b>–<b>d</b>) denote the angular rate differences between three methods: MID, POST and PRE. In (<b>b</b>–<b>d</b>), the mean is marked in dashed yellow line and the 1-sigma variance is marked in red dashed line to quantify the difference.</p> "> Figure 3
<p>Comparisons of derived angular velocities between four-sensors redundant configuration and three-sensors strategies. (<b>a</b>) denotes the <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>z</mi> </msub> </semantics></math>, and (<b>b</b>) denotes the <math display="inline"><semantics> <msub> <mi>ω</mi> <mi>x</mi> </msub> </semantics></math>.</p> "> Figure 4
<p>Comparisons of the inter-satellite pointing variation (in terms of the pitch, see <a href="#sec3dot4-remotesensing-14-00126" class="html-sec">Section 3.4</a>) derived from Slerp and Squad interpolation methods, respectively. Results of time-series and spectra (power spectral density) are shown in the left (<b>a</b>) and right (<b>b</b>), respectively.</p> "> Figure 5
<p>(<b>a</b>) Misalignment between three SCs and (<b>b</b>) their comparisons with the combination result on 6 December 2018 for GRACE-FO Sat-C. All are performed in terms of quaternion component <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>.</mo> <mi>w</mi> </mrow> </semantics></math> as an example.</p> "> Figure 6
<p>Comparisons of derived attitude between SC-only strategy and Kalman filter strategy, on 3 January 2019 for GRACE-FO Sat-D (<b>a</b>) plots the PSDs of quaternion component <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>.</mo> <mi>z</mi> </mrow> </semantics></math> obtained from the Kalman filter and SC-only strategy, respectively. In particular, (<b>b</b>) is carried out in the frame of ’LOS-KF’, denoting the inter-satellite pointing variation, see <a href="#sec3dot4-remotesensing-14-00126" class="html-sec">Section 3.4</a>.</p> "> Figure 7
<p>IMU angular rate bias about axis X, Y and Z for GRACE-FO Sat-D on 2 January 2019 in SRF frame.</p> "> Figure 8
<p>Comparisons between JPL and HUGG-01 in terms of pointing variations on 3 January 2019 for Sat-D. The pointing variations are expressed in terms of pitch (<b>a</b>,<b>b</b>), roll (<b>c</b>,<b>d</b>) and yaw (<b>e</b>,<b>f</b>) angles with their mean subtracted. From left to right, the first grey vertical line of (<b>b</b>,<b>d</b>,<b>f</b>) denotes the one-CPR frequency that corresponds to 1.6 h, and the second one denotes the two-CPR frequency that corresponds to 0.8 h.</p> "> Figure 9
<p>Time series of the daily mean of (JPL minus HUGG-01) on January 2019. (<b>a</b>,<b>b</b>) denote results of GRACE-FO Sat-C and Sat-D, respectively.</p> "> Figure 10
<p>K-band range-rate residuals derived from the JPL (in blue) and HUGG-01 (in green) attitude products on 1 January 2019. Their differences are denoted with the orange curve. (<b>a</b>,<b>b</b>) denote the pre-fit residuals, whereas (<b>c</b>,<b>d</b>) denote the post-fit residuals after extracting the gravity field signals.</p> "> Figure 11
<p>Gravity fields on January 2019 recovered from HUGG-01 (<b>a</b>) and CSR-RL06 (<b>b</b>), in terms of EWH [cm]. The gravity differences between those derived from HUGG-01 and JPL attitude products are shown in (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Data
3. Method
3.1. IMU Processing
3.2. SC Processing
3.3. Kalman Filter
3.4. Metrics
3.4.1. Inter-Satellite Pointing Variation
3.4.2. Inter-Satellite Range Rate Residual
4. Analysis
4.1. IMU Processing
4.2. SC Processing
4.3. Kalman Filter
5. Assessments
5.1. Inter-Satellite Pointing Analysis
5.2. K-Band Range-Rate Residual Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. J. Spacecr. Rocket. 2019, 56, 931–951. [Google Scholar] [CrossRef]
- Kusche, J.; Klemann, V.; Bosch, W. Mass distribution and mass transport in the Earth system. J. Geodyn. 2012, 59, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.; Watkins, M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 2019, 9, 358–369. [Google Scholar] [CrossRef]
- Dahle, C.; Murböck, M.; Flechtner, F.; Dobslaw, H.; Michalak, G.; Neumayer, K.; Abrykosov, O.; Reinhold, A.; König, R.; Sulzbach, R.; et al. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sens. 2019, 11, 2116. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Biancale, R.; Gratton, S.; Vasseur, X.; Bourgogne, S. GRACE-derived surface water mass anomalies by energy integral approach: Application to continental hydrology. J. Geod. 2011, 85, 313–328. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rodell, M. Water in the balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Sasgen, I.; Konrad, H.; Ivins, E.; Van den Broeke, M.; Bamber, J.; Martinec, Z.; Klemann, V. Antarctic ice-mass balance 2003 to 2012: Regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 2013, 7, 1499–1512. [Google Scholar] [CrossRef] [Green Version]
- Velicogna, I.; Mohajerani, Y.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; Wiese, D. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef] [Green Version]
- Panet, I.; Sylvain, B.; Narteau, C.; Rémy, D.; Lemoine, J.M. Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. Nat. Geosci. 2018, 11, 367–373. [Google Scholar] [CrossRef]
- Cambiotti, G.; Douch, K.; Cesare, S.; Haagmans, R.; Sneeuw, N.; Anselmi, A.; Anna Maria, M.; Sabadini, R. On Earthquake Detectability by the Next-Generation Gravity Mission. Surv. Geophys. 2020, 41, 1049–1074. [Google Scholar] [CrossRef]
- Kim, J. Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2000. [Google Scholar]
- Goswami, S.; Francis, S.P.; Bandikova, T.; Spero, R.E. Analysis of GRACE Follow-On Laser Ranging Interferometer derived inter-satellite pointing angles. IEEE Sens. J. 2021, 21, 19209–19221. [Google Scholar] [CrossRef]
- Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Güntner, A. What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surv. Geophys. 2016, 37, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselborn, S.; König, R.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Behzadpour, S.; Mayer-Gürr, T.; Flury, J.; Klinger, B.; Goswami, S. Multiresolution wavelet analysis applied to GRACE range-rate residuals. Geosci. Instrum. Methods Data Syst. 2019, 8, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Forootan, E.; Wang, C.; Kusche, J.; Luo, Z. A New 1-Hourly ERA5-Based Atmosphere De-Aliasing Product for GRACE, GRACE-FO, and Future Gravity Missions. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021926. [Google Scholar] [CrossRef]
- Frommknecht, B. Integrated Sensor Analysis of the GRACE Mission. Ph.D. Thesis, Leibniz University Hannover, Hanover, Germany, 2007. [Google Scholar]
- Bandikova, T.; Flury, J. Improvement of the GRACE star camera data based on the revision of the combination method. Adv. Space Res. 2014, 54, 1818–1827. [Google Scholar] [CrossRef]
- Gruber, T.; Team, N.D. e2. Motion: Earth System Mass Transport Mission (Square)—Concept for a Next Generation Gravity Field Mission—Final Report of Project Satellite Gravimetry of the Next Generation (NGGM-D). Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B Angewandte Geodäsie Heft Nr. 318, München; Technical Report; Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften: Munich, Germany, 2014; ISBN 978-3-7696-8597-8. [Google Scholar]
- Pail, R.; Chen, Q.; Engels, J.; Hauk, M.; Liu, W.; Purkhauser, A.; Saemian, P.; Sneeuw, N.; Tourian, M.; Visser, P.; et al. Additional Constellation and Scientific Analysis of the Next Generation Gravity Mission Concept (ADDCON); Technical Report; Issue 3.1, ESA Contract No. 4000118480/16/NL/FF/gp; Technical University of Munich: Munich, Germany, 2018. [Google Scholar]
- Zhou, H.; Luo, Z.; Zhou, Z.; Yang, F.; Yang, S. What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination? Surv. Geophys. 2021, 42, 699–726. [Google Scholar] [CrossRef]
- Wiese, D.N.; Visser, P.; Nerem, R.S. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv. Space Res. 2011, 48, 1094–1107. [Google Scholar] [CrossRef]
- Purkhauser, A.; Pail, R. Next generation gravity missions: Near-real time gravity field retrieval strategy. Geophys. J. Int. 2019, 217, 1314–1333. [Google Scholar] [CrossRef]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.; Barr, D.; Bize, M.; Bogan, C.; Braxmaier, C.; Burke, M.; et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Phys. Rev. Lett. 2019, 123, 031101. [Google Scholar] [CrossRef] [Green Version]
- Save, H. Status of CSR RL06 GRACE reprocessing and preliminary results. In Proceedings of the Agu Fall Meeting, New Orleans, LA, USA, 1–15 December 2017. [Google Scholar]
- Kruizinga, G.L.; Bertiger, W.I.; Case, K.E.; Finch, C.J.; Wu, S.C. GRACE Level-1 Processing Status. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 8–12 December 2003. [Google Scholar]
- Wu, S.C.; Kruizinga, G.; Bertiger, W. Algorithm Theoretical Basis Document for GRACE Level-1B Data Processing V1.2. GRACE Technical Report; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2006. [Google Scholar]
- Horwath, M.; Lemoine, J.M.; Biancale, R.; Bourgogne, S. Improved GRACE Science Results After Adjustment Of Geometric Biases In The Level-1b K-Band Ranging Data. J. Geod. 2011, 85, 23–38. [Google Scholar] [CrossRef]
- Bandikova, T.; Flury, J.; Ko, U.D. Characteristics and accuracies of the GRACE inter-satellite pointing. Adv. Space Res. 2012, 50, 123–135. [Google Scholar] [CrossRef]
- Inácio, P.; Ditmar, P.; Klees, R.; Farahani, H.H. Analysis of star camera errors in GRACE data and their impact on monthly gravity field models. J. Geod. 2015, 89, 551–571. [Google Scholar] [CrossRef] [Green Version]
- Harvey, N. GRACE star camera noise. Adv. Space Res. 2016, 58, 408–414. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X.; Hsu, H. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. J. Geod. 2016, 90, 503–523. [Google Scholar] [CrossRef]
- Romans, L. Optimal Combination of Quaternions from Multiple Star Cameras; JPL Internal Memorandum; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2003.
- Harvey, N.; Sakumura, C. Results from a GRACE/GRACE-FO attitude reconstruction Kalman filter. J. Geod. 2019, 93, 1881–1896. [Google Scholar] [CrossRef]
- Klinger, B.; Mayer-Gürr, T. Combination of GRACE star camera and angular acceleration data. In Proceedings of the EGU General Assembly, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Goswami, S.; Klinger, B.; Weigelt, M.; Mayer-Gürr, T. Analysis of attitude errors in GRACE range-rate residuals—A comparison between SCA1B and the reprocessed attitude fused product (SCA1B +ACC1B). IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Wen, H.Y.; Kruizinga, G.; Paik, M.; Landerer, F.; Bertiger, W.; Sakumura, C.; Bandikova, T.; Mccullough, C. Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) Level-1 Data Product User Handbook; Technical Report, GRACE Technical Report, JPL D-56935 (URS270772); USA, 2019. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/gracefo/docs/GRACE-FO_L1_Handbook.pdf (accessed on 9 November 2021).
- Patel, C.R. Analyzing and Monitoring GRACE-FO Star Camera Performance in a Changing Environment. Master’s Thesis, The University of Texas at Austin, Austin, TX, USA, 2020. [Google Scholar]
- Yang, F.; Kusche, J.; Forootan, E.; Rietbroek, R. Passive-ocean radial basis function approach to improve temporal gravity recovery from GRACE observations. J. Geophys. Res. Solid Earth 2017, 122, 6875–6892. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Forootan, E.; Schumacher, M.; Shum, C.; Zhong, M. Evaluating non-tidal atmospheric products by measuring GRACE K-band range rate residuals. Geophys. J. Int. 2018, 215, 1132–1147. [Google Scholar] [CrossRef]
- Jafari, M. Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system. Aerosp. Sci. Technol. 2015, 47, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Trawny, N.; Roumeliotis, S. Indirect Kalman Filter for 3D Attitude Estimation. A Tutorial for Quaternion Algebra; Technical Report Number 2005-002, Rev. 57; University of Minnesota: Minneapolis, MN, USA, 2005. [Google Scholar]
- Mandea, M.; Holschneider, M.; Lesur, V.; Luhr, H. The Earth’s magnetic field at the CHAMP satellite epoch. In System Earth via Geodetic-Geophysical Space Techniques; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Siemes, C. GOCE Gradiometer Calibration and Level 1b Data Processing; Technical Report EWP-2384; European Space Agency: Paris, France, 2011. [Google Scholar]
- Stummer, C.; Fecher, T.; Pail, R. Alternative method for angular rate determination within the GOCE gradiometer processing. J. Geod. 2011, 85, 585–596. [Google Scholar] [CrossRef]
- Lefferts, E.J.; Markley, F.L.; Shuster, M. Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn. 1982, 5, 536–542. [Google Scholar] [CrossRef]
- Wang, F. Study on Center of Mass Calibration and K-band Ranging System Calibration of the GRACE Mission. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2003. [Google Scholar]
- Liang, L.; Yang, F. An alternative SCA1B product for GRACE-FO from 2018-06 to 2020-12. Figshare 2021. [Google Scholar] [CrossRef]
- Liang, L.; Yu, J.; Wang, C.; Zhong, M.; Feng, W.; Wan, X.; Chen, W.; Yan, Y. Influence of the Low-Frequency Error of the Residual Orbit on Recovering Time-Variable Gravity Field from the Satellite-To-Satellite Tracking Mission. Remote Sens. 2021, 13, 1118. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Hu, Z.; Shi, C.; Liu, J.; Cai, H.; Liu, X. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. Adv. Space Res. 2011, 47, 1833–1850. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
Difference Value | One Day | One Month |
---|---|---|
=0 | 44.38% | 44.12% |
= | 55.62% | 55.50% |
= | 0% | 0.38% |
≥3 | 0% | 0% |
Axis | Sat | Bias Drift Rate | Bias |
---|---|---|---|
X | C | ||
Y | C | ||
Z | C | ||
X | D | ||
Y | D | ||
Z | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liang, L.; Wang, C.; Luo, Z. Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data. Remote Sens. 2022, 14, 126. https://doi.org/10.3390/rs14010126
Yang F, Liang L, Wang C, Luo Z. Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data. Remote Sensing. 2022; 14(1):126. https://doi.org/10.3390/rs14010126
Chicago/Turabian StyleYang, Fan, Lei Liang, Changqing Wang, and Zhicai Luo. 2022. "Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data" Remote Sensing 14, no. 1: 126. https://doi.org/10.3390/rs14010126
APA StyleYang, F., Liang, L., Wang, C., & Luo, Z. (2022). Attitude Determination for GRACE-FO: Reprocessing the Level-1A SC and IMU Data. Remote Sensing, 14(1), 126. https://doi.org/10.3390/rs14010126