Multivariate Analysis for Solar Resource Assessment Using Unsupervised Learning on Images from the GOES-13 Satellite
<p>Diagram of the methodology for regionalization of Mexico.</p> "> Figure 2
<p>Preprocessing step diagram.</p> "> Figure 3
<p>Diagram of the methodology for regionalization of Mexico Country.</p> "> Figure 4
<p>Albedo images. (<b>a</b>) Image with noises. (<b>b</b>) Cropped images without noises.</p> "> Figure 5
<p>L method for <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> indices using k-means algorithm. (<b>a</b>) L method with <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> index. (<b>b</b>) L method with <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> index.</p> "> Figure 5 Cont.
<p>L method for <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> indices using k-means algorithm. (<b>a</b>) L method with <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> index. (<b>b</b>) L method with <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> index.</p> "> Figure 6
<p>L method for <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> indices using GMM algorithm. (<b>a</b>) L method with <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>H</mi> </mrow> </semantics></math> index. (<b>b</b>) L method with <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>B</mi> </mrow> </semantics></math> index.</p> "> Figure 7
<p><span class="html-italic">RMSE</span> and <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> values of the relationship between geoclimatic variables and solar radiation.</p> "> Figure 8
<p>Mexico regionalization. (<b>a</b>) GMM 10 classes. (<b>b</b>) K-means 17 classes.</p> "> Figure 9
<p>Relationship between the annual average daily irradiation and cloudy sky index in the evaluation of 17 classes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Theory/Calculation
3.1. Clustering Analysis
- (1)
- Expectation step
- (a)
- Initialize , and with random values.
- (b)
- Estimate with the parameters .
- (2)
- Maximization step
- (a)
Clustering Evaluation
4. Results
4.1. Preprocessing Results
4.1.1. Clustering Analysis and Validation (Results)
4.1.2. Relationship between Clusters and the Solar Radiation
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CH | Calinski Harabasz |
DB | Davis Bouldin |
EM | expectation–maximization |
EMAS | automatic weather station |
GHI | global horizontal irradiance |
GMM | Gaussian mixture models |
GOES-13 | Geostationary Operational Environmental Satellite-13 |
Lat | latitude |
Lon | longitude |
mAMSL | meters above mean sea level |
NEDIS | National Environmental Satellite Data and Information Service |
NetCDF | network common data form |
NOAA | National Oceanic and Atmospheric Administration |
PCA | principal component analysis |
coefficient of determination | |
RMSEc | root mean squared error of a critical point c |
RMSELc | root mean squared error on the left side of the critical point c |
RMSERc | root mean squared error on the right side of the critical point c |
SI | silhouette index |
SMN | National Weather Service |
SVM | support vector machine |
TL2 | Linke turbidity |
UNAM | National Autonomous University of Mexico |
XDB | database of the variables |
References
- Aitken, D. Transitioning to a Renewable Energy Future; ISES White Paper; International Solar Energy Society: Freiburg, Germany, 2003. [Google Scholar]
- Holm, D.; McIntosh, J. Renewable energy–the future for the developing world. Renew. Energy Focus 2008, 9, 56–61. [Google Scholar] [CrossRef]
- Riveros-Rosas, D.; Bonifaz, R.; Valdes, M.; Rivas, R. Análisis por Región de Información Solarimétrica en la República Mexicana. In Proceedings of the XI Congreso Iberoamericano de Energía Solar y XXXVIII Semana Nacional de Energía Solar, Querétaro, México, 6–10 October 2014. [Google Scholar]
- Sengupta, M.; Habte, A.; Wilbert, S.; Gueymard, C.; Remund, J. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Zagouras, A.; Kolovos, A.; Coimbra, C.F. Objective framework for optimal distribution of solar irradiance monitoring networks. Renew. Energy 2015, 80, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Martín-Pomares, L.; Romeo, M.G.; Polo, J.; Frías-Paredes, L.; Fernández-Peruchena, C. Sampling Design Optimization of Ground Radiometric Stations. In Solar Resources Mapping; Springer: Berlin/Heidelberg, Germany, 2019; pp. 253–281. [Google Scholar]
- Carvalho, M.; Melo-Gonçalves, P.; Teixeira, J.; Rocha, A. Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation. Phys. Chem. Earth Parts A/B/C 2016, 94, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Zagouras, A.; Kazantzidis, A.; Nikitidou, E.; Argiriou, A. Determination of measuring sites for solar irradiance, based on cluster analysis of satellite-derived cloud estimations. Sol. Energy 2013, 97, 1–11. [Google Scholar] [CrossRef]
- Journée, M.; Müller, R.; Bertrand, C. Solar resource assessment in the Benelux by merging Meteosat-derived climate data and ground measurements. Sol. Energy 2012, 86, 3561–3574. [Google Scholar] [CrossRef]
- Watanabe, T.; Takamatsu, T.; Nakajima, T.Y. Evaluation of variation in surface solar irradiance and clustering of observation stations in Japan. J. Appl. Meteorol. Climatol. 2016, 55, 2165–2180. [Google Scholar] [CrossRef]
- Vindel, J.M.; Valenzuela, R.X.; Navarro, A.A.; Zarzalejo, L.F. Methodology for optimizing a photosynthetically active radiation monitoring network from satellite-derived estimations: A case study over mainland Spain. Atmos. Res. 2018, 212, 227–239. [Google Scholar] [CrossRef]
- Vindel, J.M.; Valenzuela, R.; Navarro, A.A.; Zarzalejo, L.F.; Paz-Gallardo, A.; Souto, J.A.; Méndez-Gómez, R.; Cartelle, D.; Casares, J.J. Modeling Photosynthetically Active Radiation from Satellite-Derived Estimations over Mainland Spain. Remote Sens. 2018, 10, 849. [Google Scholar] [CrossRef] [Green Version]
- Thanh Nga, P.T.; Ha, P.T.; Hang, V.T. Satellite-Based Regionalization of Solar Irradiation in Vietnam by k-Means Clustering. J. Appl. Meteorol. Climatol. 2021, 60, 391–402. [Google Scholar] [CrossRef]
- Laguarda, A.; Alonso-Suárez, R.; Terra, R. Solar irradiation regionalization in Uruguay: Understanding the interannual variability and its relation to El Niño climatic phenomena. Renew. Energy 2020, 158, 444–452. [Google Scholar] [CrossRef]
- De Lima, F.J.L.; Martins, F.R.; Costa, R.S.; Gonçalves, A.R.; Dos Santos, A.P.P.; Pereira, E.B. The seasonal variability and trends for the surface solar irradiation in northeastern region of Brazil. Sustain. Energy Technol. Assess. 2019, 35, 335–346. [Google Scholar]
- Polo, J.; Gastón, M.; Vindel, J.; Pagola, I. Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements. Renew. Sustain. Energy Rev. 2015, 42, 1326–1334. [Google Scholar] [CrossRef]
- Olcoz Larraéyoz, A. Implementación del Método Heliosat para la Estimación de la Radiación Solar a Partir de Imágenes de Satélite; Technical Report; Universidad Pública de Navarra: Pamplona, Spain, 2014. [Google Scholar]
- Rigollier, C.; Lefèvre, M.; Wald, L. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 2004, 77, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A.; Lara-fanego, V.; Sengupta, M.; Xie, Y. Surface albedo and reflectance: Review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol. Energy 2019, 182, 194–212. [Google Scholar] [CrossRef]
- Laguarda, A.; Abal, G. Índice de turbidez de Linke a partir de irradiación solar global en Uruguay. Av. En Energ. Renov. Y Medio Ambiente 2016, 20, 35–46. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Lantz, B. Machine Learning with R: Expert Techniques for Predictive Modeling; Packt Publishing Ltd.: Birmingham, England, 2019. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Murphy, K.P. Machine Learning a Probabilistic Perspective, 1st ed.; The MIT Press: Cambridge, MA, USA, 2012; p. 1067. [Google Scholar]
- Zagouras, A.; Pedro, H.T.; Coimbra, C.F. Clustering the solar resource for grid management in island mode. Sol. Energy 2014, 110, 507–518. [Google Scholar] [CrossRef]
- Chi, Y. R Tutorial with Bayesian Statistics Using Stan, 1st ed.; R Tutorials: Cupertino, CA, USA, 2009; p. 563. [Google Scholar]
- Govender, P.; Brooks, M.J.; Matthews, A.P. Cluster analysis for classification and forecasting of solar irradiance in Durban, South Africa. J. Energy S. Afr. 2018, 29, 51–62. [Google Scholar]
- Riveros-Rosas, D.; Arancibia-Bulnes, C.; Bonifaz, R.; Medina, M.; Peón, R.; Valdés, M. Analysis of a solarimetric database for Mexico and comparison with the CSR Model. Renew. Energy 2015, 75, 21–29. [Google Scholar] [CrossRef]
Feature | Number of Pixels | Number of PCAs | Explained Variance |
---|---|---|---|
Albedo | 1,130,253 | 6 | 90.06% |
TL2 | 1,130,253 | 3 | 95.53% |
Cloudy Sky index | 1,130,253 | 6 | 93.05% |
Altitude | 1,130,253 | 1 | 100.0% |
Station | Lat. °N | Lon. °E | Annual Average Daily Irradiation (Wh/m2) | K-Means: 17 Cl. | K-Means: 4 Cl. | GMM 10 Cl. |
---|---|---|---|---|---|---|
Nueva Rosita | 27.92 | 101.33 | 4736.95 | 14 | 3 | 9 |
Matías Romero | 16.88 | 95.03 | 4744.03 | 1 | 4 | 3 |
Paraíso | 18.42 | 93.15 | 5348.72 | 1 | 4 | 3 |
Centla | 18.40 | 92.64 | 4899.53 | 1 | 4 | 3 |
Mexicali | 32.66 | 115.29 | 5759.59 | 15 | 1 | 7 |
Presa Abelardo | 32.44 | 116.90 | 5953.55 | 15 | 1 | 7 |
Ocampo | 28.82 | 102.52 | 5478.52 | 2 | 1 | 5 |
Maguarachi | 27.85 | 107.99 | 5440.13 | 17 | 1 | 5 |
Obispo | 24.25 | 107.18 | 5378.4 | 11 | 4 | 4 |
Monclova | 18.05 | 90.82 | 5242.85 | 4 | 4 | 8 |
Acaponeta | 22.46 | 105.38 | 5297.43 | 7 | 4 | 1 |
Agustín Melgar | 25.26 | 104.00 | 5197.85 | 12 | 1 | 5 |
Metehuala | 23.64 | 100.65 | 5649.75 | 12 | 1 | 2 |
Oxktzcab | 20.29 | 89.39 | 5250.9 | 4 | 4 | 8 |
Petacalco | 17.98 | 102.12 | 5402.63 | 7 | 4 | 10 |
Nevados Toluca | 19.12 | 99.77 | 4390.92 | 16 | 2 | 10 |
Apatzingan | 19.08 | 102.37 | 5797.92 | 7 | 4 | 10 |
Angamacutiro | 20.12 | 101.72 | 5913.77 | 10 | 2 | 10 |
Atoyac | 17.20 | 100.44 | 5471.69 | 7 | 4 | 10 |
Ixtla | 19.09 | 98.64 | 5060.64 | 16 | 2 | 10 |
Atlacomulco | 19.79 | 98.87 | 5405.35 | 5 | 2 | 2 |
Perote | 19.54 | 97.26 | 5607.01 | 16 | 2 | 10 |
Altzomonil | 19.11 | 98.65 | 4747.28 | 16 | 2 | 10 |
Miahuatlan | 16.34 | 96.57 | 5636.19 | 7 | 4 | 10 |
Nochistlan | 17.43 | 97.24 | 5636.27 | 10 | 2 | 10 |
Nogales | 31.29 | 110.91 | 5959.9 | 8 | 1 | 7 |
Evaluation: k-means-17 Classes | |||||
---|---|---|---|---|---|
Class | Annual Daily Irradiation (Wh/m2) | Albedo | TL2 | Cloudy Sky Index | Altitude (mAMSL) |
16 | 4952.0 | 0.7651 | 3.7766 | 0.0706 | 2010 |
14 | 4737.0 | 1.5362 | 4.1138 | 0.0797 | 279 |
1 | 4997.4 | 0.9692 | 4.1138 | 0.0768 | 282 |
12 | 5423.8 | 1.1008 | 3.1486 | 0.0458 | 1890 |
4 | 5246.9 | 0.9216 | 4.2178 | 0.0662 | 83 |
11 | 5378.4 | 1.407 | 3.8554 | 0.049 | 259 |
5 | 5405.4 | 0.9852 | 3.2987 | 0.0456 | 2190 |
17 | 5440.1 | 0.8627 | 3.488 | 0.0515 | 2050 |
2 | 5478.5 | 1.5647 | 3.6405 | 0.0448 | 1.340 |
7 | 5521.2 | 0.9344 | 3.9526 | 0.0435 | 616 |
10 | 5775.0 | 0.9273 | 3.792 | 0.039 | 1.450 |
15 | 5856.6 | 3.0128 | 3.4441 | 0.041321 | 211 |
8 | 5959.9 | 1.7008 | 2.8913 | 0.0386 | 660 |
Evaluation: k-means-4 Classes | |||||
Class | Annual Daily Irradiation (Wh/m2) | Albedo | TL2 | Cloudy Sky Index | Altitude (mAMSL) |
3 | 4736.95 | 1.4228 | 3.9373 | 0.0724 | 417 |
2 | 5251.6 | 0.9089 | 3.5908 | 0.0493 | 1880 |
4 | 5315.5 | 1.0929 | 4.0504 | 0.0597 | 300 |
1 | 5634.2 | 1.3156 | 3.3587 | 0.0467 | 1410 |
Evaluation: GMM-10 Classes | |||||
Class | Annual Daily Irradiation (Wh/m2) | Albedo | TL2 | Cloudy Sky Index | Altitude (mAMSL) |
9 | 4736.95 | 1.3981 | 3.9828 | 0.0758 | 412 |
3 | 4997.43 | 1.0493 | 3.1392 | 0.045 | 1.900 |
8 | 5246.9 | 0.9156 | 4.2207 | 0.0662 | 66 |
1 | 5297.4 | 0.9402 | 3.4437 | 0.0467 | 1670 |
10 | 5366.4 | 0.8934 | 3.7703 | 0.0455 | 1350 |
5 | 5372.2 | 1.5972 | 3.6213 | 0.0458 | 1540 |
4 | 5378.4 | 1.2612 | 3.8461 | 0.0501 | 590 |
2 | 5528 | 1.0493 | 3.1392 | 0.045 | 1900 |
7 | 5891.0 | 1.9808 | 3.1757 | 0.0398 | 528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-González, J.D.; García-Hernández, A.; Riveros-Rosas, D.; Moreno-Chávez, G.; Zarzalejo, L.F.; Alonso-Montesinos, J.; Galván-Tejada, C.E.; Mauricio-González, A.; González-Cabrera, A.E. Multivariate Analysis for Solar Resource Assessment Using Unsupervised Learning on Images from the GOES-13 Satellite. Remote Sens. 2022, 14, 2203. https://doi.org/10.3390/rs14092203
Salinas-González JD, García-Hernández A, Riveros-Rosas D, Moreno-Chávez G, Zarzalejo LF, Alonso-Montesinos J, Galván-Tejada CE, Mauricio-González A, González-Cabrera AE. Multivariate Analysis for Solar Resource Assessment Using Unsupervised Learning on Images from the GOES-13 Satellite. Remote Sensing. 2022; 14(9):2203. https://doi.org/10.3390/rs14092203
Chicago/Turabian StyleSalinas-González, Jared D., Alejandra García-Hernández, David Riveros-Rosas, Gamaliel Moreno-Chávez, Luis F. Zarzalejo, Joaquín Alonso-Montesinos, Carlos E. Galván-Tejada, Alejandro Mauricio-González, and Adriana E. González-Cabrera. 2022. "Multivariate Analysis for Solar Resource Assessment Using Unsupervised Learning on Images from the GOES-13 Satellite" Remote Sensing 14, no. 9: 2203. https://doi.org/10.3390/rs14092203
APA StyleSalinas-González, J. D., García-Hernández, A., Riveros-Rosas, D., Moreno-Chávez, G., Zarzalejo, L. F., Alonso-Montesinos, J., Galván-Tejada, C. E., Mauricio-González, A., & González-Cabrera, A. E. (2022). Multivariate Analysis for Solar Resource Assessment Using Unsupervised Learning on Images from the GOES-13 Satellite. Remote Sensing, 14(9), 2203. https://doi.org/10.3390/rs14092203