Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities
<p>The profile of the study area.</p> "> Figure 2
<p>Spatial distribution of (<b>a</b>) water production service supply, (<b>b</b>) water production service demand, (<b>c</b>) carbon sequestration service supply, (<b>d</b>) carbon sequestration service demand, (<b>e</b>) food supply service supply, (<b>f</b>) food supply service demand, (<b>g</b>) soil conservation service supply, and (<b>h</b>) soil conservation service demand in the ZKL urban agglomeration.</p> "> Figure 3
<p>Distribution of the supply-demand ratios of (<b>a</b>) water production service, (<b>b</b>) carbon sequestration service, (<b>c</b>) food supply service, and (<b>d</b>) soil conservation service in the ZKL urban agglomeration.</p> "> Figure 4
<p>Supply-demand quadrant chart of (<b>a</b>) water production service, (<b>b</b>) carbon sequestration service, (<b>c</b>) food supply service, and (<b>d</b>) soil conservation service in the ZKL urban agglomeration.</p> "> Figure 5
<p>Supply-demand matching types of (<b>a</b>) water production service, (<b>b</b>) carbon sequestration service, (<b>c</b>) food supply service, and (<b>d</b>) soil conservation service in the ZKL urban agglomeration.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Selection of Ecosystem Service Indicators
2.3.2. Water Production Service
2.3.3. Carbon Sequestration Service
2.3.4. Food Supply Service
2.3.5. Soil Conservation Service
2.3.6. Calculation of Ecosystem Services Supply-Demand Ratio
2.3.7. Factors Influencing Ecosystem Service Supply-Demand Relationships
2.3.8. Classification of Spatial Matching of Ecosystem Service Supply-Demand
3. Results
3.1. Characteristics of Supply and Demand of Ecosystem Services
3.2. Supply-Demand Ratio of Ecosystem Services
3.3. Correlation between Influencing Factors and Supply-Demand Ratio of Ecosystem Services
3.4. Spatial Matching of Ecosystem Service Supply-Demand
4. Discussion
4.1. Supply and Demand (Mis)matches of Ecosystem Services and Their Influencing Factors
4.2. Policy Implications
4.3. Limitations and Contributions of the Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Lin, Y.; Zhai, T.; He, T.; Qi, Y.; Jin, Z.; Cai, Y. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.C.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas river basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Xia, B.; Jiao, M.; Huang, G. How to balance ecosystem services and economic benefits?—A case study in the Pearl River Delta, China. J. Environ. Manag. 2020, 271, 110917. [Google Scholar] [CrossRef] [PubMed]
- Daily, G.C. Nature’s Services Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 256–260. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; McPhearson, T. Mapping supply of and demand for ecosystem services to assess environmental justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Seidl, I.; Tisdell, C.A. Carrying capacity reconsidered: From Malthus’ population theory to cultural carrying capacity. Ecol. Econ. 1999, 31, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.K.; Paavola, J.; Cooper, P.; Farber, S.; Jessamy, V.; Georgiuo, S. Valuing nature: Lessons learned and future research directions. Ecol. Econ. 2003, 46, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2007, 60, 435–449. [Google Scholar] [CrossRef]
- Schulp, C.; Lautenbach, S.; Verburg, P.H. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 2014, 36, 131–141. [Google Scholar] [CrossRef]
- Sauter, I.; Felix, K.; Bolliger, J.; Winter, B.; Pazúr, R. Changes in demand and supply of ecosystem services under scenarios of future land use in Vorarlberg, Austria. J. Mt. Sci. 2019, 16, 2793–2809. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, B. The progress in ecosystem services mapping: A review. Acta Ecol. Sin. 2014, 34, 316–325. (In Chinese) [Google Scholar]
- Xiao, Y.; Xie, G.; Lu, C.; Xu, J. Involvement of ecosystem service flows in human wellbeing based on the relationship between supply and demand. Acta Ecol. Sin. 2016, 36, 3096–3102. (In Chinese) [Google Scholar]
- Bastian, O.; Syrbe, R.U.; Rosenberg, M.; Rahe, D.; Grunewald, K. The five pillar EPPS framework for quantifying, mapping and managing ecosystem services. Ecosyst. Serv. 2013, 4, 15–24. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Compton, J.E.; Harrison, J.A.; Dennis, R.L.; Greaver, T.L.; Hill, B.H.; Jordan, S.J.; Walker, H.; Campbell, H.V. Ecosystem services altered by human changes in the nitrogen cycle: A new perspective for US decision making. Ecol. Lett. 2011, 14, 804–815. [Google Scholar] [CrossRef]
- Dong, X.; Ren, J.; Zhang, P.; Jin, Y.; Liu, R.; Wang, X.-C.; Lee, C.T.; Klemeš, J.J. Entwining ecosystem services, Land Use Change and human well-being by nitrogen flows. J. Clean. Prod. 2021, 308, 127442. [Google Scholar] [CrossRef]
- Ji, Z.; Xu, Y.; Wei, H. Identifying Dynamic Changes in Ecosystem Services Supply and Demand for Urban Sustainability: Insights from a Rapidly Urbanizing City in Central China. Sustainability 2020, 12, 3428. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Agundez, I.; Onaindia, M.; Barraqueta, P.; Madariaga, I. Provisioning ecosystem services supply and demand: The role of landscape management to reinforce supply and promote synergies with other ecosystem services. Land Use Policy 2015, 47, 145–155. [Google Scholar] [CrossRef]
- De Vreese, R.; Leys, M.; Fontaine, C.M.; Dendoncker, N. Social mapping of perceived ecosystem services supply—The role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol. Indic. 2016, 66, 517–533. [Google Scholar] [CrossRef]
- Morri, E.; Pruscini, F.; Scolozzi, R.; Santolini, R. A forest ecosystem services evaluation at the river basin scale: Supply and demand between coastal areas and upstream lands (Italy). Ecol. Indic. 2014, 37, 210–219. [Google Scholar] [CrossRef]
- Castro, A.J.; Vaughn, C.C.; Julian, J.P.; García-Llorente, M. Social demand for ecosystem services and implications for watershed management. JAWRA 2016, 52, 209–221. [Google Scholar] [CrossRef]
- Breeze, T.D.; Vaissiere, B.E.; Bommarco, R.; Petanidou, T.; Seraphides, N.; Kozak, L.; Scheper, J.; Biesmeijer, J.C.; Kleijn, D.; Gyldenkaerne, S.; et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS ONE 2014, 9, e82996. [Google Scholar] [CrossRef] [Green Version]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Thober, J.; Wolff, S.; Bonn, A. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar]
- Zhang, W.; Wu, X.; Yu, Y. The changes of ecosystem services supply-demand and responses to rocky desertifification in Xiaojiang basin during 2005–2015. J. Soil Water Conserv. 2019, 164, 141–152. (In Chinese) [Google Scholar]
- Yang, L.; Dong, L.; Zhang, L.; He, B.; Zhang, Y. Quantitative assessment of carbon sequestration service supply and demand and service flows: A case study of the Yellow River Diversion Project South Line. Resour. Sci. 2019, 41, 557–571. (In Chinese) [Google Scholar]
- Liu, C.; Wang, W.; Liu, L.; Li, P. Supply-demand matching of county ecosystem services in Northwest China: A case study of Gulang county. J. Nat. Resour. 2020, 35, 2177–2190. (In Chinese) [Google Scholar] [CrossRef]
- Xu, C.; Gong, J.; Yan, L.; Gao, B.; Li, Y. Spatiotemporal changes of supply and demand risk of soil conservation services in Bailongjiang watershed, Gansu Province. Chin. J. Ecol. 2021, 40, 1397–1408. (In Chinese) [Google Scholar]
- Liu, L.; Liu, C.; Wang, C.; Li, P. Supply and demand matching of ecosystem services in loess hilly region: A case study of Lanzhou. Acta Geogr. Sin. 2019, 09, 217–233. (In Chinese) [Google Scholar]
- Cui, F.; Tang, H.; Zhang, Q.; Wang, B.; Dai, L. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Wang, C. Spatial-temporal Variations in the Supply-demand Balance of Key Ecosystem Services in Hubei Province. Resour. Environ. Yangtze Basin. 2019, 09, 64–75. (In Chinese) [Google Scholar]
- Yongyong, Z.; Jinjin, H.; Guoxia, M.; Xiaoyan, Z.; Aifeng, L.; Wei, W.; Zhonggen, W. Regional differences of water regulation services of terrestrial ecosystem in the Tibetan Plateau: Insights from multiple land covers. J. Clean. Prod. 2021, 283, 125216. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life. Academy of Sciences, Main Observatory of Leningrad; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Potter, N.J.; Zhang, L.; Milly, P.C.D.; McMahon, T.A.; Jakeman, A.J. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resour. Res. 2005, 41, W06007. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Sharp, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; Vigerstol, K.; et al. InVEST 2.5.3 User’s Guide, the Natural Capital Project; Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Meng, S.; Huang, Q.; He, C.; Yang, S. Mapping the Changes in Supply and Demand of Carbon Sequestration Service: A Case Study in Beijing. J. Nat. Resour. 2020, 35, 2177–2190. (In Chinese) [Google Scholar]
- Tu, H.; Liu, C. Calculation of CO2 emission of standard coal. Coal Qual. Technol. 2014, 2, 57–60. (In Chinese) [Google Scholar]
- Zhu, W.; Pan, Y.; Zhang, J. Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Chin. J. Plant Ecol. 2007, 03, 413–424. (In Chinese) [Google Scholar]
- Wang, C.; Liu, C.; Wu, Y.; Liu, Y. Spatial pattern, tradeoffs and synergies of ecosystem services in loess hilly region: A case study in Yuzhong County. Chin. J. Ecol. 2019, 38, 521–531. (In Chinese) [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Chen, J.; Wang, H.; Liu, G.; Bai, Y. Evaluation of Ecosystem Services and Its Adaptive Policies in the Hangjiahu Region under Water-Energy-Food Nexus. Resour. Environ. Yangtze Basin. 2019, 28, 52–63. (In Chinese) [Google Scholar]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Zhang, Q.; Pilla, F.; Joshi, P.K.; Basu, B.; Keesstra, S.; Roy, P.S.; Wang, Y.; Sutton, P.C.; Chakraborti, S.; et al. Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world’s largest mangrove ecosystem. Sci. Total Environ. 2020, 715, 137004. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Hu, B.; Kang, F.; Han, H.; Cheng, X.; Li, Z. Exploring drivers of ecosystem services variation from a geospatial perspective: Insights from China’s Shanxi Province. Ecol. Indicat. 2021, 131, 108188. [Google Scholar] [CrossRef]
- Mooney, H.; Larigauderie, A.; Cesario, M.; Elmquist, T.; Hoegh-Guldberg, O.; Lavorel, S.; Mace, G.M.; Palmer, M.; Scholes, R.; Yahara, T. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 2009, 1, 46–54. [Google Scholar] [CrossRef]
- Bicking, S.; Burkhard, B.; Kruse, M.; Müller, F. Mapping of nutrient regulating ecosystem service supply and demand on different scales in Schleswig-Holstein, Germany. One Ecosyst. 2018, 3, e22509. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Candiago, S.; Egarter Vigl, L.; Jäger, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Zhao, Y.; Shen, H.; Qin, Y.; Liu, X. Spatio-temporal pattern evolution of ecosystem service supply and demand in Beijing-Tianjin-Hebei region. J. Ecol. Rural Environ. 2018, 34, 968–975. (In Chinese) [Google Scholar]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Yang, Z.; Wen, M.; Huang, L.; Liu, H.; Wang, J.; Chen, W.; Zhuang, C. Identifying the spatial disparities and determinants of ecosystem service balance and their implications on land use optimization. Sci. Total Environ. 2021, 793, 148472. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhao, X.; Wu, P.; Hu, P.; Gao, X. Quantification and spatially explicit driving forces of the incoordination between ecosystem service supply and social demand at a regional scale. Ecol. Indicat. 2022, 137, 108764. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, R.; Zhuang, D.; Lu, Z. Spatial gradient differences of ecosystem services supply and demand in the pearl river delta region. J. Clean. Prod. 2020, 279, 123849. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.A.; Xie, P.; Liu, Y.X. Zoning for the construction of green space ecological networks in Guangdong Province based on the supply and demand of ecosystem services. Acta Ecol. Sin. 2017, 37, 4562–4572. (In Chinese) [Google Scholar]
- Li, K.; Hou, Y.; Andersen, P.S.; Xin, R.; Rong, Y.; Skov-Petersen, H. An ecological perspective for understanding regional integration based on ecosystem service budgets, bundles, and flows: A case study of the Jinan metropolitan area in China. J. Environ. Manag. 2022, 305, 114371. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Dong, X. Land Consolidation Zoning in Shaanxi Province based on the Supply and Demand of Ecosystem Services. Chin. Land Sci. 2018, 32, 73–80. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Yang, Q.; Cheng, F.; Chu, J.; Chen, X. Spatial Differentiation of Anhui Province Based on the Relationship between Supply and Demand of Ecosystem Services. J. Ecol. Rural Environ. 2018, 34, 577–583. (In Chinese) [Google Scholar]
- Huang, Z.; Wang, F.; Cao, W. Dynamic analysis of an ecological security pattern relying on the relationship between ecosystem service supply and demand:a case study on the Xiamen-Zhangzhou-Quanzhou city cluster. Acta Ecol. Sin. 2018, 38, 4327–4340. (In Chinese) [Google Scholar]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Dong, X.; Xie, M.; Zhang, Q.; Wang, M.; Guo, X. Ecosystem services demand assessment regarding disaster vulnerability and supply-demand spatial matching. Acta Ecol. Sin. 2018, 38, 6422–6431. (In Chinese) [Google Scholar]
- Liu, S.; Yang, Y.; Wang, Y. Mapping supply and demand differentiation of hydrological regulation service based on matrix analysis: A case study of Jiaxing City, Zhejiang Province. Acta Ecol. Sin. 2019, 39, 1189–1202. (In Chinese) [Google Scholar]
- Wu, J.; Men, X.; Liang, J.; Zhao, Y. Research on supply and demand equilibrium of ecosystem services in Guangdong Province based on the gini coefficient. Acta Ecol. Sin. 2020, 40, 6812–6820. (In Chinese) [Google Scholar]
- Baró, F.; Haase, D.; Gómez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Beichler, S.A. Exploring the link between supply and demand of cultural ecosystem services—Towards an integrated vulnerability assessment. Int. J. Biodiv. Sci. Ecosyst. Serv. Manage. 2015, 11, 250–263. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; García-Llorente, M.; Cabello, J.; Castro, H. From supply to social demand: A landscape-scale analysis of the water regulation service. Landsc. Ecol. 2014, 29, 1069–1082. [Google Scholar] [CrossRef]
- Vigl, L.E.; Depellegrin, D.; Pereira, P.; de Groot, R.; Tappeiner, U. Mapping the ecosystem service delivery chain: Capacity, flow, and demand pertaining to aesthetic experiences in mountain landscapes. Sci. Total Environ. 2017, 574, 422–436. [Google Scholar] [CrossRef]
- Stürck, J.; Schulp, C.J.E.; Verburg, P.H. Spatio-temporal dynamics of regulating ecosystem services in Europe—The role of past and future land use change. Appl. Geogr. 2015, 63, 121–135. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Martin-Lopez, B.; Lavorel, S.; Berraquero-Diaz, L.; Escalera-Reyes, J.; Comin, F.A. Ecosystem services flows: Why stakeholders’ power relationships matter. PLoS ONE 2015, 10, e0132232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Chen, X.; Huang, L.; Zhu, C.; Shahtahmassebi, A.; Zhang, J.; Shen, S.; Peng, R.; Deng, J.; Wang, K.; et al. Fine-scale mapping of urban ecosystem service demand in a metropolitan context: A population-income-environmental perspective. Sci. Total Environ. 2021, 781, 146784. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Wei, H.; Cai, E.; Xue, D.; Liu, M. Linking Ecosystem Service Supply–Demand Risks and Regional Spatial Management in the Yihe River Basin, Central China. Land 2021, 10, 843. [Google Scholar] [CrossRef]
- Sun, R.; Li, F.; Chen, L. A demand index for recreational ecosystem services associated with urban parks in Beijing, China. J. Environ. Manag. 2019, 251, 109612. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Luo, Y.; He, H.; Wu, L.; Wang, H.; Wang, Q.; Wu, J. Quantification of ecosystem services supply-demand and the impact of demographic change on cultural services in Shenzhen, China. J. Environ. Manag. 2022, 304, 114280. [Google Scholar] [CrossRef]
- Zoderer, B.M.; Tasser, E.; Carver, S.; Tappeiner, U. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosyst. Serv. 2019, 37, 100938. [Google Scholar] [CrossRef]
Data Names | Data Layout | Data Sources | Data Usage |
---|---|---|---|
Land-use maps | Raster data with a spatial resolution of 30 m | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 16 February 2021) | Model basic input data in the simulation process of water yield, carbon sequestration and soil conservation supply |
Digital elevation model (DEM) | Raster data with a spatial resolution of 30 m | Data obtained from the geospatial data cloud | Model basic input data in the simulation process of soil conservation supply and the influencing factor of ES |
Precipitation and temperature | Table data | China Meteorological Data Service Center (http://data.cma.cn/, accessed on 16 February 2021) | Model input data in the simulation process of water yield, carbon sequestration, and soil conservation supply and the influencing factor of ES |
Normalized Difference Vegetation Index (NDVI) | Raster data with a spatial resolution of 30 m | Earth Big Data Science Engineering Data Sharing Service System (http://databank.casearth.cn/, accessed on 16 February 2021) | Model input data in the simulation process of carbon sequestration supply |
Soil texture, organic matter content, and effective rooting depth | Raster data with a spatial resolution of 1000 m | Chinese soil dataset based on the Harmonized World Soil Database (http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/, accessed on 6 April 2018) | Model input data in the simulation process of water yield supply and soil conservation supply and demand |
Spatial distribution data of soil types | Raster data with a spatial resolution of 1000 m | Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on 16 February 2021) | Model input data in the simulation process of soil conservation supply and demand |
Socio-economic data, such as food production, population, and energy consumption | Table and text data | Statistical yearbooks of cities and counties | Calculating the demand for food production and carbon sequestration |
Water consumption data | Text data | Henan Water Resources Bulletin | Calculating the demand for water yield |
Population spatial density data | Raster data with a spatial resolution of 1000 m | World Population Data (https://www.worldpop.org/, accessed on 16 February 2021) | Mapping the ES demand for food production, carbon sequestration, and water yield |
Ecosystem Services | Reason for Selection |
---|---|
Provision services | |
Food supply | Crops, including food crops (wheat and corn), cash crops (oil crops), vegetables, and fruits, are central to the daily life of humans. Agriculture is an important industry in the study area. Moreover, as an urban agglomeration area, ZKL has a huge demand for food production. |
Regulating services | |
Water production | The water production service is the major factor that limits the establishment of the ecological environment, while maintaining many important functions of an ecosystem. The ZKL urban agglomeration is located in a semiarid area, with a high demand for water. |
Soil conservation | The west of the study area is dominated by mountains and hills, while the east is dominated by plains. Because of the large altitude differences, soil erosion is serious, and the soil conservation service is vital to the local agriculture. |
Carbon sequestration | Ecosystems absorb carbon dioxide to synthesize organic matter and fix carbon in plants, effectively reducing the concentration of carbon dioxide in the atmosphere. Simultaneously, carbon sequestration plays an important role in improving the ecological environment and maintaining climate balance. Against the background of realizing worldwide carbon neutrality, the carbon sequestration of ecosystems plays an important role in offsetting regional carbon emissions. |
Districts and Counties | Water Production | Carbon Sequestration | Food Supply | Soil Conservation |
---|---|---|---|---|
Urban area of Zhengzhou | −0.987 | 0.702 | 0.177 | 0.866 |
Dengfeng | −0.739 | 0.957 | 0.492 | 0.667 |
Xinzheng | −0.985 | 0.920 | 0.416 | 0.758 |
Xinmi | −0.904 | 0.937 | 0.434 | 0.709 |
Gongyi | −0.665 | 0.937 | 0.289 | 0.811 |
Zhongmou | −0.974 | 0.956 | 0.571 | 0.707 |
Xingyang | −0.900 | 0.942 | 0.519 | 0.812 |
Urban area of Kaifeng | −0.995 | 0.960 | 0.608 | 0.735 |
Tongxu | −1.000 | 0.970 | 0.470 | 0.702 |
Weishi | −1.000 | 0.972 | 0.501 | 0.751 |
Qixian | −1.000 | 0.969 | 0.447 | 0.707 |
Lankao | −0.995 | 0.974 | 0.517 | 0.749 |
Urban area of Luoyang | −0.973 | 0.708 | 0.250 | 0.839 |
Luanchuan | 0.704 | 0.985 | 0.161 | 0.899 |
Songxian | 0.337 | 0.981 | 0.274 | 0.825 |
Ruyang | 0.005 | 0.966 | 0.361 | 0.802 |
Yichuan | −0.920 | 0.918 | 0.483 | 0.719 |
Luoning | −0.206 | 0.978 | 0.451 | 0.712 |
Yiyang | −0.675 | 0.956 | 0.592 | 0.687 |
Yanshi | −0.808 | 0.916 | 0.431 | 0.806 |
Mengjin | −0.883 | 0.929 | 0.541 | 0.778 |
Xin’an | −0.615 | 0.953 | 0.462 | 0.753 |
Influencing Factors | rwp | rcs | rfs | rsc |
---|---|---|---|---|
Elevation (E) | 0.950 ** | 0.288 | −0.455 * | 0.328 |
Temperature (T) | −0.935 ** | −0.381 | 0.422 * | −0.245 |
Precipitation (P) | 0.833 ** | 0.315 | −0.435 * | 0.271 |
Population density (PD) | −0.367 | −0.944 ** | −0.463 * | 0.398 |
Gross domestic product (GDP) | −0.208 | −0.776 ** | −0.470 * | 0.393 |
Urbanization level (UL) | −0.285 | −0.951 ** | −0.511 * | 0.458 * |
Supply-Demand Balance Status | Supply-Demand Matching Types | Ecological Zones | Districts and Counties | Planning Recommendations and Concrete Measures |
---|---|---|---|---|
Surplus or deficit | High supply–low demand | Ecological conservation area | Luanchuan, Songxian, Ruyang, and Luoning | Delimit a strict ecological protection red line, maintain the supply capacity of water production services in the area, and ensure that ecological quality does not decline |
Deficit | Low supply–high demand | Ecological restoration area | Urban area of Zhengzhou, Luoyang and Kaifeng, Lankao, Qxian, Tongxu, and Weishi | Implement strict water-saving measures across the entire society; rationally develop and utilize water resources; strictly control the boundaries of urban development; adhere to the strategy of “setting the city based on water resources”; control the impermeable area of newly-added construction land |
Deficit | Low supply–low demand | Ecological improvement area | Yiyang, Xin’an, Mengjin, Yichuan, Dengfeng, Yanshi, Gongyi, Xinmi, Zhongmou, Xinzhang, and Xingyang | Issue ecological control guidelines focusing on the protection of water resources and strictly abide by the ecological bottom line; strengthen ecological protection and restoration strategies; constantly promote the ecological governance engineering of key water systems and water sources, such as the Yellow River, Yihe River, and Luohe River |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, D.; Wang, Z.; Li, Y.; Liu, M.; Wei, H. Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities. Remote Sens. 2022, 14, 1703. https://doi.org/10.3390/rs14071703
Xue D, Wang Z, Li Y, Liu M, Wei H. Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities. Remote Sensing. 2022; 14(7):1703. https://doi.org/10.3390/rs14071703
Chicago/Turabian StyleXue, Dong, Zhaojun Wang, Yuan Li, Mengxue Liu, and Hejie Wei. 2022. "Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities" Remote Sensing 14, no. 7: 1703. https://doi.org/10.3390/rs14071703
APA StyleXue, D., Wang, Z., Li, Y., Liu, M., & Wei, H. (2022). Assessment of Ecosystem Services Supply and Demand (Mis)matches for Urban Ecological Management: A Case Study in the Zhengzhou–Kaifeng–Luoyang Cities. Remote Sensing, 14(7), 1703. https://doi.org/10.3390/rs14071703