The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption
<p>(<b>left</b>) Study area indicated on ETM+ TIR (Band 6) image, used here for visual presentation purposes alone, showing a high temperature thermal anomaly image of the 2001 Mt. Etna eruption, acquired on 5 August 2001; (<b>right</b>) the areal extent of the individual lava flow, LFS1 [<a href="#B7-remotesensing-14-01641" class="html-bibr">7</a>], analysed in this study, is highlighted in yellow and superimposed on a Digital Elevation Model (DEM) of Mt. Etna. Empty red circles indicate an approximate location of collected samples.</p> "> Figure 2
<p>Experimental high-temperature (773–1373 K) setup to measure emissivity at IVIS Laboratory, University of Pittsburgh (USA). Shown is the power controller unit and Nicolet Nexus 870 FTIR spectrometer, adjacent to the experiment chamber (<b>top right</b>), which is continuously purged of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>CO</mi> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">H</mi> <mn>2</mn> </msub> <mi mathvariant="normal">O</mi> </mrow> </semantics></math>. The experiment chamber contains the furnace and sample measuring apparatus (<b>right</b>). The sample before and after measurement is also shown (<b>bottom left</b>), and the calibration material (alumina) used as the blackbody source.</p> "> Figure 3
<p>A flowchart illustrating methods (steps 1–8) to derive radiant heat flux using high-spatial resolution data (ETM+) in two SWIR bands.</p> "> Figure 4
<p>(<b>Top panel</b>) Emissivity spectra of basaltic samples, acquired using FTIR emission spectroscopy at a range of sample temperatures from 1373 to 773 K; (<b>bottom panel</b>) indicating emissivity–temperature trends in the region(s) of interest (SWIR, MIR and TIR). The samples are trachy-basaltic lavas belonging to the individual lava flow (<a href="#remotesensing-14-01641-f001" class="html-fig">Figure 1</a>) emplaced between 18 July to 9 August 2001 [<a href="#B7-remotesensing-14-01641" class="html-bibr">7</a>]. Overall, the average emissivity increases as the temperature of the samples decreases in a nonlinear inverse relationship.</p> "> Figure 5
<p>Emissivity–temperature trends at a range of temperatures (773–1373 K) in spaceborne (<b>a</b>) SWIR (ETM+) and (<b>b</b>–<b>d</b>) MIR-TIR (MODIS) bands.</p> "> Figure 6
<p>Behaviour of the upper and lower mean emissivity functions <math display="inline"><semantics> <mrow> <msub> <mi>ε</mi> <mrow> <mi>T</mi> <mo>,</mo> <mo>−</mo> </mrow> </msub> <mfenced> <mi>λ</mi> </mfenced> <mo>,</mo> <msub> <mi>ε</mi> <mrow> <mi>T</mi> <mo>,</mo> <mo>+</mo> </mrow> </msub> <mfenced> <mi>λ</mi> </mfenced> </mrow> </semantics></math> as their range approaches the full available spectrum. The flattening of the curves indicates that the mean emissivity stabilises enough to allow us to approximate the full spectrum mean emissivity with the limiting value for each given temperature.</p> "> Figure 7
<p>Emissivity–temperature trend at a range of temperatures (773–1373 K) for the full spectrum, with uncertainty <4%, as reported.</p> "> Figure 8
<p>(<b>left</b>) Study area (LFS1) [<a href="#B7-remotesensing-14-01641" class="html-bibr">7</a>] indicated on ETM+ TIR (Band 6) image, used here for visual presentation purposes alone; (<b>right</b>) ETM+ scene, Band 7, acquired on 5 August 2001, showing all radiant pixels, within the high-temperature thermal anomaly, used for computation of radiant heat flux in this study (both SWIR Bands 5 and 7), using a multicomponent emissivity approach. The spectral radiance (<math display="inline"><semantics> <mrow> <msup> <mrow> <mrow> <mi mathvariant="normal">W</mi> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mrow> <mi>sr</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>) ‘thresholding’ values used are shown in the table below the inset on the right.</p> "> Figure 9
<p>Histogram of the difference between the radiant heat flux for variable emissivity and constant emissivity computed for ~4000 theoretical pixels. The median value is 0.15 and the standard deviation is 0.13.</p> "> Figure 10
<p>(<b>Top</b>)—Per pixel radiant heat flux for variable emissivity (orange) and constant emissivity (blue). (<b>Bottom</b>)—Relative error (grey squares) computed for MODIS images during 15 July–30 August 2001 at Mt. Etna.</p> "> Figure 11
<p>MODIS-derived TADR using a constant (‘TADR 1′, red triangles) and the multicomponent emissivity (‘TADR 2′, blue squares). The cumulative volumes are also reported (red curve for ‘TADR 1′, blue curve for ‘TADR 2′).</p> "> Figure 12
<p>Final lava flow emplacements simulated by GPUFLOW on a 20-degree inclined DEM using (<b>a</b>) constant emissivity of 0.9 and (<b>b</b>) temperature-dependent emissivity. Colours represent the thickness of lava in meters, as reported in the legends. The white point indicates the flow start position, whereas the black lines represent the contours of altitude (500 m intervals, from 2000 m to 0 m).</p> "> Figure 13
<p>(<b>left</b>) Study area (LFS1) [<a href="#B7-remotesensing-14-01641" class="html-bibr">7</a>] indicated on a ETM+ TIR (Band 6) image, used here for visual presentation purposes alone; (<b>right</b>) hotspot pixels derived from MODIS data, acquired on 5 August at 21:10 UTC, superimposed on the Landsat 7, Band 7 data acquired on 5 August at 20:34 UTC, as SWIR Bands (5 and 7) were used for ETM+ computation of radiant heat flux. MODIS pixel colours are related to the value of radiant heat flux (e.g., bright red—high values, pale red—low values). The dashed green line indicates the extent of LFS1 study area, whereas the solid green border line marks MODIS pixels relating to ETM+ radiant pixel area in Band 7.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Emissivity from Radiance Spectra
2.2. FTIR Data Analysis and Creation of a ‘Dynamic Emissivity–Temperature Rule’
2.3. Radiant Heat Flux from Spaceborne Data
3. Results
3.1. Laboratory-Based FTIR Results
3.1.1. Mean Integrated Emissivity for Remote Sensing Applications
3.1.2. Mean Emissivity for Lava Flow Modelling
3.2. Spaceborne Data Results: Computation of Radiant Heat Flux
3.2.1. Landsat 7-ETM+ Data
3.2.2. MODIS Data
3.3. Lava Flow Modelling Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; Volume 9780521859, ISBN 9781139029346. [Google Scholar]
- Blackett, M. Early analysis of landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens. 2014, 6, 2282–2295. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Neri, M.; Del Negro, C. Probabilistic modeling of future volcanic eruptions at Mount Etna. J. Geophys. Res. Solid Earth 2013, 118, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Ganci, G.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 etna eruption. Ann. Geophys. 2019, 62, 1–13. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Mapping volcanic deposits of the 2011–2015 etna eruptive events using satellite remote sensing. Front. Earth Sci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Coltelli, M.; Proietti, C.; Branca, S.; Marsella, M.; Andronico, D.; Lodato, L. Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J. Geophys. Res. Earth Surf. 2007, 112, 1–18. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ferrucci, F. Role of Emissivity in Lava Flow ‘Distance-to-Run’ Estimates from Satellite-Based Volcano Monitoring. Remote Sens. 2019, 11, 662. [Google Scholar] [CrossRef] [Green Version]
- Flynn, L.P.; Harris, A.J.L.; Rothery, D.A.; Oppenheimer, C. High-spatial-resolution thermal remote sensing of active volcanic features using landsat and hyperspectral data. Geophys. Monogr. Ser. 2000, 116, 161–177. [Google Scholar] [CrossRef]
- Lee, R.J.; Ramsey, M.S.; King, P.L. Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts. J. Geophys. Res. Solid Earth 2013, 118, 1968–1983. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.; Chevrel, M.; Coppola, D.; Harris, A. The influence of emissivity on the thermo-rheological modeling of the channelized lava flows at Tolbachik volcano. Ann. Geophys. 2019, 61, 1–24. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ganci, G.; Maturilli, A.; Rymer, H.; Blake, S.; Ferrucci, F. Spaceborne EO and a combination of inverse and forward modelling for monitoring lava flow advance. Remote Sens. 2019, 11, 3032. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.O.; Ramsey, M.S. Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces. Remote Sens. 2020, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.O.; Williams, D.B.; Lee, R.J.; Ramsey, M.S. Quantitative Thermal Emission Spectroscopy at High Temperatures: A Laboratory Approach for Measurement and Calibration. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022157. [Google Scholar] [CrossRef]
- Thompson, J.O.; Ramsey, M.S. The influence of variable emissivity on lava flow propagation modeling. Bull. Volcanol. 2021, 83, 41. [Google Scholar] [CrossRef]
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 Lava Flows at the Sciara del Fuoco, stromboli-analysis from multi-sensor infrared satellite imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.W.; Filho, C.R.d.S.; Wright, R.; Sabatino, G.; Pabon, R.C. HOTMAP: Global hot target detection at moderate spatial resolution. Remote Sens. Environ. 2016, 177, 78–88. [Google Scholar] [CrossRef]
- Marchese, F.; Genzano, N.; Neri, M.; Falconieri, A.; Mazzeo, G.; Pergola, N. A multi-channel algorithm for mapping volcanic thermal anomalies by means of sentinel-2 MSI and Landsat-8 OLI data. Remote Sens. 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Murray, J.B.; Aries, S.E.; Davies, M.A.; Flynn, L.P.; Wooster, M.J.; Wright, R.; Rothery, D.A. Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J. Volcanol. Geotherm. Res. 2000, 102, 237–269. [Google Scholar] [CrossRef]
- Lautze, N.C.; Harris, A.J.L.; Bailey, J.E.; Ripepe, M.; Calvari, S.; Dehn, J.; Rowland, S.K.; Evans-Jones, K. Pulsed lava effusion at Mount Etna during 2001. J. Volcanol. Geotherm. Res. 2004, 137, 231–246. [Google Scholar] [CrossRef]
- Ruff, S.W.; Christensen, P.R.; Barbera, P.W.; Anderson, D.L. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration. J. Geophys. Res. Solid Earth 1997, 102, 14899–14913. [Google Scholar] [CrossRef]
- Hamilton, V.E.; Wyatt, M.B.; McSween, H.Y.; Christensen, P.R. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. J. Geophys. Res. E Planets 2001, 106, 14733–14746. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.; Blackett, M.; Hill-Butler, C. Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 2015, 42, 282–289. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Obs. Syst. X 2005, 5882, 58820E. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomat. Nat. Hazards Risk 2011, 2, 279–290. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 544–550. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Giordano, D.; Dingwell, D.B. Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions. Bull. Volcanol. 2003, 65, 8–14. [Google Scholar] [CrossRef]
- Hirn, B.; Di Bartola, C.; Ferrucci, F. Spaceborne monitoring 2000–2005 of the Pu’u ’O’o-Kupaianaha (Hawaii) eruption by synergetic merge of multispectral payloads ASTER and MODIS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2848–2856. [Google Scholar] [CrossRef]
- Matson, M.; Dozier, J. Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm. Eng. Remote Sens. 1981, 47, 1311–1318. [Google Scholar]
- Rothery, D.A.; Francis, P.W.; Wood, C.A. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. 1988, 93, 7993–8008. [Google Scholar] [CrossRef]
- Oppenheimer, C. Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophys. Res. Lett. 1993, 20, 431–434. [Google Scholar] [CrossRef]
- Harris, A.J.L. Electronic Supplement 5: The dual-band method: A history of its application to volcanic hot spots. In Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; pp. 1–26. [Google Scholar]
- Harris, A.J.L. Electronic Supplement 6: The dual-band method: Worked examples. In Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; pp. 1–25. [Google Scholar]
- USA. Department of the Interior. USA. Geological Survey Global Visualisation (GloVis) Viewer. Available online: https://glovis.usgs.gov/ (accessed on 1 September 2019).
- Lee, R.J.; King, P.L.; Ramsey, M.S. Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Bilotta, G.; Cappello, A.; Herault, A.; Del Negro, C. HOTSAT: A multiplatform system for the thermal monitoring of volcanic activity using satellite data. Geol. Soc. Spec. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Zuccarello, F.; Bilotta, G.; Cappello, A.; Ganci, G. Effusion Rates on Mt. Etna and Their Influence on Lava Flow Hazard Assessment. Remote Sens. 2022, 14, 1366. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Ganci, G. Modelling of geophysical flows through GPUFLOW. Appl. Sci. 2022. submitted. [Google Scholar]
- Bilotta, G.; Cappello, A.; Hérault, A.; Vicari, A.; Russo, G.; Del Negro, C. Sensitivity analysis of the MAGFLOW Cellular Automaton model for lava flow simulation. Environ. Model. Softw. 2012, 35, 122–131. [Google Scholar] [CrossRef]
- Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. Influence of topographic data uncertainties and model resolution on the numerical simulation of lava flows. Environ. Model. Softw. 2019, 112, 1–15. [Google Scholar] [CrossRef]
- Kereszturi, G.; Cappello, A.; Ganci, G.; Procter, J.; Németh, K.; Del Negro, C.; Cronin, S.J. Numerical simulation of basaltic lava flows in the auckland volcanic field, New Zealand—Implication for volcanic hazard assessment. Bull. Volcanol. 2014, 76, 879. [Google Scholar] [CrossRef]
- Kereszturi, G.; Németh, K.; Moufti, M.R.; Cappello, A.; Murcia, H.; Ganci, G.; Del Negro, C.; Procter, J.; Zahran, H.M.A. Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia-Insights from surface morphology and lava flow simulations. J. Volcanol. Geotherm. Res. 2016, 309, 14–30. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Calvari, S.; Perez, N.M.; Hernandez, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C. Lava flow hazard modelling during the 2014–2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappello, A.; Zanon, V.; Del Negro, C.; Ferreira, T.J.L.; Queiroz, M.G.P.S. Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nova 2015, 27, 156. [Google Scholar] [CrossRef]
- Pedrazzi, D.; Cappello, A.; Zanon, V.; Del Negro, C. Impact of effusive eruptions from the Eguas–Carvão fissure system, São Miguel Island, Azores Archipelago (Portugal). J. Volcanol. Geotherm. Res. 2015, 291, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Geshi, N.; Neri, M.; Del Negro, C. Lava flow hazards—An impending threat at Miyakejima volcano, Japan. J. Volcanol. Geotherm. Res. 2015, 308, 1–9. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Centorrino, V.; Bilotta, G.; Cappello, A.; Ganci, G.; Corradino, C.; Del Negro, C. A particle swarm optimization–based heuristic to optimize the configuration of artificial barriers for the mitigation of lava flow risk. Environ. Model. Softw. 2021, 139, 105023. [Google Scholar] [CrossRef]
- Abtahi, A.A.; Kahle, A.B.; Abbott, E.A.; Gillespie, A.R.; Sabol, D.; Yamada, G.; Pieri, D. Emissivity Changes in Basalt Cooling after Eruption from PU’U O’O, Kilauea, Hawaii. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 6–10 December 2002; Volume 2002, p. V71A-1263. [Google Scholar]
- Coppola, D.; Laiolo, M.; Piscopo, D.; Cigolini, C. Rheological control on the radiant density of active lava flows and domes. J. Volcanol. Geotherm. Res. 2013, 249, 39–48. [Google Scholar] [CrossRef]
- Bilotta, G.; Hérault, A.; Cappello, A.; Ganci, G.; Del Negro, C. GPUSPH: A Smoothed Particle Hydrodynamics model for the thermal and rheological evolution of lava flows. Geol. Soc. Spec. Publ. 2016, 426, 387–408. [Google Scholar] [CrossRef]
- Zago, V.; Bilotta, G.; Hérault, A.; Dalrymple, R.A.; Fortuna, L.; Cappello, A.; Ganci, G.; Del Negro, C. Semi-implicit 3D SPH on GPU for lava flows. J. Comput. Phys. 2018, 375, 854–870. [Google Scholar] [CrossRef]
- Zago, V.; Bilotta, G.; Cappello, A.; Dalrymple, R.A.; Fortuna, L.; Ganci, G.; Hérault, A.; Del Negro, C. Preliminary validation of lava benchmark tests on the gpusph particle engine. Ann. Geophys. 2019, 62, VO224. [Google Scholar] [CrossRef]
WAVELENGTH | ESTIMATE | STANDARD ERROR | CONFIDENCE INTERVAL | |
---|---|---|---|---|
SWIR | 1 | 3.07 × 10−1 | 1.97 × 10−1 | {−3.17 × 10−1, 9.32 × 10−1} |
T | 1.13 × 10−3 | 3.75 × 10−4 | {−5.57 × 10−5, 2.32 × 10−3} | |
−6.09 × 10−7 | 1.74 × 10−7 | {−1.16 × 10−6, −5.67 × 10−8} | ||
MIR | 1 | 8.56 × 10−1 | 9.86 × 10−2 | {5.44 × 10−1, 1.17} |
T | 7.07 × 10−5 | 1.88 × 10−4 | {−5.24 × 10−4, 6.65 × 10−4} | |
−2.52 × 10−7 | 8.71 × 10−8 | {−5.29 × 10−7, 2.38 × 10−8} | ||
TIR_31 | 1 | 1.03 | 1.98 × 10−2 | {9.72 × 10−1, 1.10} |
T | −7.33 × 10−5 | 3.77 × 10−5 | {−1.93 × 10−4, 4.63 × 10−5} | |
−1.29 × 10−8 | 1.75 × 10−8 | {−6.85 × 10−8, 4.27 × 10−8} | ||
TIR_32 | 1 | 1.03 | 1.61 × 10−2 | {9.76 × 10−1, 1.08} |
T | −4.62 × 10−5 | 3.07 × 10−5 | {−1.44 × 10−4, 5.12 × 10−5} | |
−2.61 × 10−8 | 1.43 × 10−8 | {−7.13 × 10−8, 1.91 × 10−8} |
Temperature (K) | 773 | 823 | 873 | 923 | 973 | 1023 | 1073 | 1123 | 1173 | 1223 | 1273 | 1323 | 1373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWIR 1 | 0.805 | 0.804 | 0.837 | 0.867 | 0.857 | 0.846 | 0.825 | 0.805 | 0.825 | 0.791 | 0.736 | 0.755 | 0.753 |
SWIR 2 | 0.805 | 0.804 | 0.837 | 0.867 | 0.857 | 0.846 | 0.825 | 0.805 | 0.825 | 0.791 | 0.736 | 0.755 | 0.753 |
Error (Series) | 0.012 | 0.047 | 0.012 | 0.016 | 0.004 | 0.007 | 0.010 | 0.021 | 0.025 | 0.020 | 0.022 | 0.029 | 0.032 |
Radiance SWIR1 | 2.14 | 4.50 | 8.10 | 14.3 | 23.0 | 34.8 | 50.96 | 70.71 | 101.4 | 131.1 | 161.8 | 214.6 | 267.3 |
Radiance SWIR2 | 4.30 | 7.60 | 11.4 | 17.5 | 25.4 | 33.4 | 44.8 | 56.3 | 75.8 | 90.5 | 104.4 | 130.8 | 151.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogic, N.; Bilotta, G.; Ganci, G.; Thompson, J.O.; Cappello, A.; Rymer, H.; Ramsey, M.S.; Ferrucci, F. The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sens. 2022, 14, 1641. https://doi.org/10.3390/rs14071641
Rogic N, Bilotta G, Ganci G, Thompson JO, Cappello A, Rymer H, Ramsey MS, Ferrucci F. The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing. 2022; 14(7):1641. https://doi.org/10.3390/rs14071641
Chicago/Turabian StyleRogic, Nikola, Giuseppe Bilotta, Gaetana Ganci, James O. Thompson, Annalisa Cappello, Hazel Rymer, Michael S. Ramsey, and Fabrizio Ferrucci. 2022. "The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption" Remote Sensing 14, no. 7: 1641. https://doi.org/10.3390/rs14071641
APA StyleRogic, N., Bilotta, G., Ganci, G., Thompson, J. O., Cappello, A., Rymer, H., Ramsey, M. S., & Ferrucci, F. (2022). The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing, 14(7), 1641. https://doi.org/10.3390/rs14071641