Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province
<p>Study area: (<b>a</b>) altitude above sea level (<a href="http://srtm.csi.cgiar.org/" target="_blank">http://srtm.csi.cgiar.org/</a>, accessed on 1 November 2019) and verification sites location (grazing-excluded sites in blue, free-grazing sites in red); (<b>b</b>) alpine grassland types [<a href="#B24-remotesensing-14-01455" class="html-bibr">24</a>] and meteorological station location.</p> "> Figure 2
<p>Spatiotemporal patterns of precipitation and temperature in alpine grassland in Qinghai Province from 2005 to 2018. (<b>a</b>) Mean annual temperature (MAT), (<b>b</b>) change trend of MAT, (<b>c</b>) mean annual total precipitation (MAP), and (<b>d</b>) change trend of MAP.</p> "> Figure 3
<p>Spatiotemporal patterns of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math> in alpine grassland in Qinghai Province from 2005 to 2018: (<b>a</b>) mean annual <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) change trend of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) mean annual <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math>; (<b>d</b>) change trend of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math>; (<b>e</b>) mean annual <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>f</b>) change trend of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p>Ground validation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 5
<p>Spatiotemporal patterns of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math> in alpine grassland in Qinghai Province from 2005 to 2018: (<b>a</b>) mean annual <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math>; (<b>b</b>) change trend of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) mean annual <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>d</b>) change trend of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Correlations of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math> with climate in alpine grassland in Qinghai Province from 2005 to 2018: (<b>a</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math> and temperature; (<b>b</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">p</mi> </msub> </mrow> </semantics></math> and precipitation; (<b>c</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math> and temperature; (<b>d</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math> and precipitation; (<b>e</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math> and temperature; (<b>f</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>ac</mi> </mrow> </msub> </mrow> </semantics></math> and precipitation.</p> "> Figure 7
<p>Correlations of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math> with climate in alpine grassland in Qinghai Province from 2005 to 2018: (<b>a</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math> and temperature; (<b>b</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">h</mi> </msub> </mrow> </semantics></math> and precipitation; (<b>c</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math> and temperature; (<b>d</b>) correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mrow> <mi>gap</mi> </mrow> </msub> </mrow> </semantics></math> and precipitation.</p> "> Figure 8
<p>Spatial patterns of driving factors for <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>NPP</mi> </mrow> <mi mathvariant="normal">a</mi> </msub> </mrow> </semantics></math> changes in alpine grassland in Qinghai Province from 2005 to 2018.</p> "> Figure 9
<p>Spatial patterns of future stocking rates.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Methods
2.3.1. Estimating
2.3.2. Estimating
2.3.3. Estimating
3. Results
3.1. Spatiotemporal Patterns of Precipitation and Temperature in Alpine Grassland in Qinghai Province from 2005 to 2018
3.2. Spatiotemporal Patterns of Alpine Grassland , , and in Qinghai Province from 2005 to 2018
3.3. Spatiotemporal Patterns of Alpine Grassland and in Qinghai Province from 2005 to 2018
3.4. Correlation Analysis of NPP with Climate in Alpine Grassland in Qinghai Province from 2005 to 2018
3.5. Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province
4. Discussion
4.1. Methods
4.2. Impacts of Different Driving Factors on Alpine Grassland NPP
4.3. Limitations and Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, P.; Qu, J.; Xu, X.; Tang, J.; Han, Q.; Xie, S.; Wang, T.; Lai, J. Study on the characteristics of sandy alpine grasslands and its relationship between plant distribution and microtopography in the source regions of Yangtze River. Acta Ecol. Sin. 2019, 39, 1030–1040. (In Chinese) [Google Scholar]
- Fayiah, M.; Dong, S.; Li, Y.; Xu, Y.; Gao, X.; Li, S.; Shen, H.; Xiao, J.; Yang, Y.; Wessell, K. The relationships between plant diversity, plant cover, plant biomass and soil fertility vary with grassland type on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2019, 286, 106659. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhang, F.; He, Y.; Shi, P.; Guo, X.; Wang, J.; Zhang, L.; Li, Y.; Cao, G.; et al. Atmospheric water vapor and soil moisture jointly determine the spatiotemporal variations of CO2 fluxes and evapotranspiration across the Qinghai-Tibetan Plateau grasslands. Sci. Total Environ. 2021, 791, 148379. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; Li, M.; Zhang, Y.; Wang, X.; Wang, Z. Dynamic forage-livestock balance analysis in alpine grasslands on the Northern Tibetan Plateau. J. Environ. Manag. 2019, 238, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Ran, Q.; Hao, Y.; Xia, A.; Liu, W.; Hu, R.; Cui, X.; Xue, K.; Song, X.; Xu, C.; Ding, B.; et al. Quantitative Assessment of the Impact of Physical and Anthropogenic Factors on Vegetation Spatial-Temporal Variation in Northern Tibet. Remote Sens. 2019, 11, 1183. [Google Scholar] [CrossRef] [Green Version]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Quantitative measurements of the interaction between net primary productivity and livestock production in Qinghai Province based on data fusion technique. J. Clean. Prod. 2017, 142, 758–766. [Google Scholar] [CrossRef]
- Yu, H.; Ding, Q.; Meng, B.; Lv, Y.; Liu, C.; Zhang, X.; Sun, Y.; Li, M.; Yi, S. The Relative Contributions of Climate and Grazing on the Dynamics of Grassland NPP and PUE on the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3424. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Du, Y.; Ke, X.; Guo, X.; Cao, G.; Zhou, H. Soil and plant community characteristics under long-term continuous grazing of different intensities in an alpine meadow on the Tibetan plateau. Biochem. Syst. Ecol. 2019, 85, 72–75. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, J.; Zhang, J.; Zhang, X.; Song, C. Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau. Remote Sens. 2017, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Yin, Y.; Michalk, D.; Yun, X.; Ding, Y.; Li, X.; Ren, J. Herders’ opinions about desirable stocking rates and overstocking in the rangelands of northern China. Rangel. J. 2014, 36, 601. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, L.; Liu, W.; Qi, Y.; Wo, X. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. J. Geogr. Sci. 2014, 24, 303–312. [Google Scholar] [CrossRef]
- Fan, J.; Shao, Q.; Liu, J.; Wang, J.; Harris, W.; Chen, Z.; Zhong, H.; Xu, X.; Liu, R. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 2010, 170, 571–584. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhang, Z.; Tong, L.; Wang, Z.; Li, J. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhang, X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, W.; Peng, Y.; Hu, Y.; Ma, T.; Xie, Y.; Wang, L.; Liu, J.; Liu, Z. A new AG-AGB estimation model based on MODIS and SRTM data in Qinghai Province, China. Ecol. Indic. 2021, 133, 108378. [Google Scholar] [CrossRef]
- Wei, X.; Yan, C.; Wei, W. Grassland Dynamics and the Driving Factors Based on Net Primary Productivity in Qinghai Province, China. ISPRS Int. J. Geo-Inf. 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhou, D.; Shen, X.; Fan, G.; Zhang, H. Koppen’s climate classification map for China. J. Meteorol. Sci. 2020, 40, 752–760. (In Chinese) [Google Scholar]
- Qinghai General Station of Grassland. Qinghai Grassland Resources; Qinghai People’s Publishing House: Xining, China, 2012. (In Chinese) [Google Scholar]
- Piao, S.; Fang, J.; He, J.; Xiao, Y. Spatial distribution of grassland biomass in China. Acta Phytoecol. Sin. 2004, 28, 491–498. (In Chinese) [Google Scholar]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, X. Study on NPP of natural vegetation in China under global climate change. Acta Phytoecol. Sin. 1996, 20, 11–19. (In Chinese) [Google Scholar]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Shi, Y.; Li, L. The study on simulating light use efficiency of vegetation in Qinghai Province. Sci. Geogr. Sin. 2012, 32, 621–627. (In Chinese) [Google Scholar]
- Zhang, M.; Jiang, W.; Chen, Q.; Liu, X. Use improved CASA model to estimate the maximum light use efficiency of class in grassland comprehensive and sequential classification system. Grassl. Turf 2012, 32, 60–66. (In Chinese) [Google Scholar]
- Dong, Y.; Yan, H.; Du, W.; Hu, Y. Spatio-temporal analysis of grassland carrying capacity in Mongolian Plateau based on supply-consumption relationship. J. Nat. Resour. 2019, 34, 1093–1107. (In Chinese) [Google Scholar] [CrossRef]
- Shao, H.; Sun, X.; Wang, H.; Zhang, X.; Xiang, Z.; Tan, R.; Chen, X.; Xian, W.; Qi, J. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, Y.; Langford, C.; Bai, H.; Hou, X. Herder stocking rate and household income under the Grassland Ecological Protection Award Policy in northern China. Land Use Policy 2019, 82, 120–129. [Google Scholar] [CrossRef]
- Shao, Q.; Fan, J.; Liu, J.; Huang, L.; Cao, W.; Liu, L. Target-based Assessment on Effects of First-stage Ecological Conservation and Restoration Project in Three-river Source Region, China and Policy Recommendations. Bull. Chin. Acad. Sci. 2017, 32, 35–44. (In Chinese) [Google Scholar]
- Wang, F.; Wei, X.; Ma, S. The study on forage yield and stocking rate of alpine meadow based on normalized difference vegetation index data. Chin. J. Grassl. 2021, 43, 78–85. (In Chinese) [Google Scholar]
- Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [Google Scholar] [CrossRef]
- Chen, H.; Ju, P.; Zhang, J.; Wang, Y.; Zhu, Q.; Yan, L.; Kang, X.; He, Y.; Zeng, Y.; Hao, Y.; et al. Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau. Sci. Bull. 2020, 65, 2406–2418. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Wang, J.; Cao, W.; Harris, W. Spatial and temporal variability of grassland yield and its response to climate change and anthropogenic activities on the Tibetan Plateau from 1988 to 2013. Ecol. Indic. 2018, 95, 141–151. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Zhang, X.; Fiedler, S.; Gao, Q.; Zhou, Y.; Cao, W.; Hassan, W.; Margarint, M.C.; Tarolli, P.; et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. 2021, 281, 111875. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J.K. Environmental Carrying Capacity Assessment—The Policy Instrument and Tool for Sustainable Spatial Management. Front. Environ. Sci. 2020, 8, 579838. [Google Scholar] [CrossRef]
- Widodo, B.; Lupyanto, R.; Sulistiono, B.; Harjito, D.A.; Hamidin, J.; Hapsari, E.; Yasin, M.; Ellinda, C. Analysis of Environmental Carrying Capacity for the Development of Sustainable Settlement in Yogyakarta Urban Area. Procedia Environ. Sci. 2015, 28, 519–527. [Google Scholar] [CrossRef] [Green Version]
Mean | Trends | Status of Available Pastures | Current Stocking Rate | Future Stocking Rate |
---|---|---|---|---|
≥0 | ≥0 | Restored | Low | Should be increased |
<0 | Restored | Low | Must not be increased | |
<0 | ≥0 | Degraded | Overgrazed | Should be reduced |
<0 | Degraded | Overgrazed | Must be reduced |
Hypothesis | |
---|---|
≥ 0 and | increased because of climate change |
≥ 0 and < | increased because of anthropogenic activities |
< 0 and | decreased because of climate change |
< 0 and < | decreased because of anthropogenic activities |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Liu, Z.; Hu, Y.; Zhou, W.; Peng, Y.; Ma, T.; Liu, L.; Li, S.; Wang, L.; Mao, X. Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province. Remote Sens. 2022, 14, 1455. https://doi.org/10.3390/rs14061455
Zhao L, Liu Z, Hu Y, Zhou W, Peng Y, Ma T, Liu L, Li S, Wang L, Mao X. Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province. Remote Sensing. 2022; 14(6):1455. https://doi.org/10.3390/rs14061455
Chicago/Turabian StyleZhao, Li, Zhenhua Liu, Yueming Hu, Wu Zhou, Yiping Peng, Tao Ma, Luo Liu, Shihua Li, Liya Wang, and Xiaoyun Mao. 2022. "Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province" Remote Sensing 14, no. 6: 1455. https://doi.org/10.3390/rs14061455
APA StyleZhao, L., Liu, Z., Hu, Y., Zhou, W., Peng, Y., Ma, T., Liu, L., Li, S., Wang, L., & Mao, X. (2022). Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province. Remote Sensing, 14(6), 1455. https://doi.org/10.3390/rs14061455