Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion
"> Figure 1
<p>Overview of the proposed method. The input remote sensing LR images are first preclassified into three classes. Then, different SR nets are used to reconstruct SR images for each class.</p> "> Figure 2
<p>The examples of remote sensing images and their gradient images in three classes with different complexity. The images in columns 1, 3, and 5 are remote sensing images, and the images in columns 2, 4, and 6 are their corresponding gradient images. (<b>a</b>) Examples of the simple class; (<b>b</b>) Examples of the medium class; (<b>c</b>) Examples of the complex class.</p> "> Figure 3
<p>Network architecture of our method. The LR image is fused into an SR image by the deep feature branch and the shallow feature branch.</p> "> Figure 4
<p>Structure of multi-kernel residual attention (MKRA).</p> "> Figure 5
<p>Structure of multi-kernel (MK), channel attention (CA), and pixel attention (PA) in MKRA.</p> "> Figure 6
<p>The original images and the gradient of the original images, and both of them after <math display="inline"><semantics> <msub> <mi>L</mi> <mn>0</mn> </msub> </semantics></math> gradient minimization.</p> "> Figure 7
<p>Examples of WHURS and AID datasets. The first line is the WHURS dataset, and the second line is the AID dataset.</p> "> Figure 8
<p>The number of network parameters (K) for scale <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math>, simple net, medium net, and complex net are our SR nets in <a href="#remotesensing-14-00925-f001" class="html-fig">Figure 1</a>.</p> "> Figure 9
<p>Average PSNR and SSIM results of various SR methods. (<b>a</b>) PSNR on WHURS; (<b>b</b>) SSIM on WHURS; (<b>c</b>) PSNR on AID; (<b>d</b>) SSIM on AID.</p> "> Figure 10
<p>Visual comparison of some representative SR methods and our model on <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> factor: (<b>a</b>) stadium; (<b>b</b>) airport; (<b>c</b>) port; (<b>d</b>) river.</p> "> Figure 10 Cont.
<p>Visual comparison of some representative SR methods and our model on <math display="inline"><semantics> <mrow> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> factor: (<b>a</b>) stadium; (<b>b</b>) airport; (<b>c</b>) port; (<b>d</b>) river.</p> ">
Abstract
:1. Introduction
- We first introduce the preclassification strategy to the remote sensing image SR task. More specifically, we divide remote sensing images into three classes according to the structural complexity of scenes. Deep networks with different complexity are used for different classes of remote sensing images. The training difficulty is reduced with the declining number of training samples for each class. In this way, each network can learn the commonness of images in one class, improve the network’s adaptability, and achieve good reconstruction effects for remote sensing images of different scenes and different complexity classes.
- We design a fusion network using the deep features and shallow features to deal with the problem of weak edge structure in remote sensing images. On the one hand, the multi-kernel residual attention (MKRA) modules are deployed to effectively extract the deep features of an LR image and learn the detail differences of images by using the global residual method. On the other hand, considering that the deep network lacks shallow features at its end, the shallow features of original data are integrated into the deep features at the end of the network. In fact, we take the main edge as the shallow features to solve the problem of weak edge structure of remote sensing images, which can well recover image edges and texture details.
- An edge loss and a cycle consistent loss are added to guide the training process. To avoid the trouble of weight hyperparameter, we adopt the charbonnier loss as the normal form of the loss function. The total loss function not only calculates the overall difference and edge difference between the HR image and the reconstructed SR image, but also calculates the difference between the LR image and the downsampled SR image, so as to better use the LR remote sensing image to guide the training process of the SR network.
2. Related Work
3. Proposed Method
3.1. Preclassification Strategy
3.2. Deep–Shallow Features Fusion Network
3.2.1. Multi-Kernel Residual Attention
3.2.2. Shallow Features Extraction
3.3. Loss Function
4. Experiment
4.1. Dataset Settings
4.2. Implementation Details
4.3. Preclassification Experiment
4.4. Quantitative and Qualitative Evaluation
4.4.1. Quantitative Evaluation
4.4.2. Qualitative Evaluation
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SR | Super-resolution |
LR | Low-resolution |
HR | High-resolution |
PSNR | Peak signal-to-noise ratio |
SSIM | Structural similarity |
MKRA | Multi-kernel residual attention |
VDSR | Very deep super-resolution |
LGCNet | Local–global combined network |
EDSR | Enhanced deep super-resolution |
PAN | Pixel attention network |
DRSEN | Deep residual squeeze and excitation network |
References
- Chen, Z.; Zhang, T.; Ouyang, C. End-to-end airplane detection using transfer learning in remote sensing images. Remote Sens. 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sens. Environ. 2020, 250, 112045. [Google Scholar] [CrossRef]
- Chen, K.; Fu, K.; Yan, M.; Gao, X.; Sun, X.; Wei, X. Semantic segmentation of aerial images with shuffling convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 173–177. [Google Scholar] [CrossRef]
- Ran, S.; Gao, X.; Yang, Y.; Li, S.; Zhang, G.; Wang, P. Building multi-feature fusion refined network for building extraction from high-resolution remote sensing images. Remote Sens. 2021, 13, 2794. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Han, L.; Zhu, L. How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery? Remote Sens. 2020, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.H.; Liao, Q. Deep learning for single image super-resolution: A brief review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Zhang, L.; Shi, G.; Wu, X. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 2011, 20, 1838–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 184–199. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhao, H.; Kong, X.; He, J.; Qiao, Y.; Dong, C. Efficient image super-resolution using pixel attention. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 56–72. [Google Scholar]
- Yang, D.; Li, Z.; Xia, Y.; Chen, Z. Remote sensing image super-resolution: Challenges and approaches. In Proceedings of the IEEE International Conference on Digital Signal Processing, Singapore, 21–24 July 2015; pp. 196–200. [Google Scholar]
- Lei, S.; Shi, Z.; Zou, Z. Super-resolution for remote sensing images via local–global combined network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Gu, J.; Sun, X.; Zhang, Y.; Fu, K.; Wang, L. Deep residual squeeze and ecitation network for remote sensing image super-resolution. Remote Sens. 2019, 11, 1817. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Lu, C.; Xu, Y.; Jia, J. Image smoothing via L0 gradient minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference, Hong Kong, 12–15 December 2011; pp. 1–12. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Fast and accurate image super-resolution with deep laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2599–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Cheng, X.; Li, X.; Yang, J.; Tai, Y. SESR: Single image super resolution with recursive squeeze and excitation networks. In Proceedings of the International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; pp. 147–152. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Dai, D.; Yang, W. Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci. Remote Sens. Lett. 2010, 8, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in Pytorch; 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 10 February 2022).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
Structure Component | Layer | Input | Output |
---|---|---|---|
MK module | conv | ||
conv | |||
conv | |||
conv | |||
ReLU | |||
CA module | avgpool | ||
conv | |||
ReLU | |||
conv | |||
sigmoid | |||
multiple | , | ||
PA module | conv | ||
ReLU | |||
conv | |||
sigmoid | |||
multiple | , |
Parameter | Setting |
---|---|
Batch size | 8 |
Training epoch number | 500 |
Optimization method | Adam [34], , |
Learning rate (LR) | Initial , halved every 100 epochs |
Scale | Preclassification | Metric | Simple Class | Medium Class | Complex Class |
---|---|---|---|---|---|
PSNR | 41.6271 | 34.5859 | 29.8556 | ||
SSIM | 0.9717 | 0.9511 | 0.9237 | ||
√ | PSNR | 41.7225 | 34.8476 | 30.3133 | |
SSIM | 0.9725 | 0.9542 | 0.9308 | ||
PSNR | 38.5069 | 30.4516 | 25.9097 | ||
SSIM | 0.9267 | 0.8630 | 0.8010 | ||
√ | PSNR | 38.5845 | 30.5792 | 26.1368 | |
SSIM | 0.9286 | 0.8659 | 0.8084 | ||
PSNR | 35.4589 | 27.7834 | 23.6102 | ||
SSIM | 0.8801 | 0.7700 | 0.6787 | ||
√ | PSNR | 36.3193 | 28.1385 | 23.8651 | |
SSIM | 0.8914 | 0.7921 | 0.7088 |
Dataset | Scale | Metric | Bicubic | VDSR | LGCNet | PAN | EDSR | DRSEN | Ours |
---|---|---|---|---|---|---|---|---|---|
WHURS | PSNR | 33.5046 | 34.2532 | 35.5700 | 36.0771 | 36.1139 | 36.2806 | 36.4095 | |
SSIM | 0.9125 | 0.9325 | 0.9427 | 0.9481 | 0.9487 | 0.9502 | 0.9512 | ||
PSNR | 29.8517 | 30.3579 | 30.9459 | 31.5422 | 31.5927 | 31.6506 | 31.8460 | ||
SSIM | 0.8093 | 0.8387 | 0.8463 | 0.8623 | 0.8632 | 0.8665 | 0.8701 | ||
PSNR | 27.9060 | 28.1940 | 28.6602 | 29.2272 | 29.2723 | 29.3464 | 29.4892 | ||
SSIM | 0.7231 | 0.7510 | 0.7581 | 0.7816 | 0.7820 | 0.7872 | 0.7976 | ||
AID | PSNR | 32.3756 | 33.0879 | 34.1301 | 34.6490 | 34.7083 | 34.8480 | 34.9872 | |
SSIM | 0.8887 | 0.9084 | 0.9200 | 0.9269 | 0.9277 | 0.9294 | 0.9314 | ||
PSNR | 29.0883 | 29.6564 | 30.0690 | 30.6791 | 30.7214 | 30.8084 | 31.0138 | ||
SSIM | 0.7846 | 0.8111 | 0.8199 | 0.8372 | 0.8380 | 0.8408 | 0.8475 | ||
PSNR | 27.3062 | 27.6983 | 27.9841 | 28.5654 | 28.5974 | 28.6905 | 28.8425 | ||
SSIM | 0.7027 | 0.7267 | 0.7344 | 0.7582 | 0.7583 | 0.7629 | 0.7743 |
Image | Metric | Bicubic | VDSR | LGCNet | PAN | EDSR | DRSEN | Ours |
---|---|---|---|---|---|---|---|---|
(a) stadium | PSNR | 24.4454 | 25.4497 | 25.3274 | 27.3530 | 27.3029 | 27.5224 | 28.1065 |
SSIM | 0.7624 | 0.7858 | 0.7923 | 0.8568 | 0.8513 | 0.8566 | 0.8793 | |
(b) airport | PSNR | 32.2469 | 32.9542 | 33.4316 | 34.5850 | 34.7783 | 34.9624 | 35.2572 |
SSIM | 0.8802 | 0.8890 | 0.8995 | 0.9173 | 0.9190 | 0.9222 | 0.9279 | |
(c) port | PSNR | 23.0638 | 23.8094 | 23.6353 | 24.4243 | 24.4345 | 24.5867 | 24.7065 |
SSIM | 0.7410 | 0.7685 | 0.7627 | 0.8044 | 0.8014 | 0.8068 | 0.8187 | |
(d) river | PSNR | 30.9059 | 31.3190 | 31.7969 | 32.1488 | 32.2085 | 32.2516 | 32.3075 |
SSIM | 0.8080 | 0.8236 | 0.8391 | 0.8460 | 0.8472 | 0.8487 | 0.8519 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Chen, X.; Zhang, W.; Ma, H.; Wang, L.; Zhang, J.; Wang, M.; Jiang, B. Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion. Remote Sens. 2022, 14, 925. https://doi.org/10.3390/rs14040925
Yue X, Chen X, Zhang W, Ma H, Wang L, Zhang J, Wang M, Jiang B. Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion. Remote Sensing. 2022; 14(4):925. https://doi.org/10.3390/rs14040925
Chicago/Turabian StyleYue, Xiuchao, Xiaoxuan Chen, Wanxu Zhang, Hang Ma, Lin Wang, Jiayang Zhang, Mengwei Wang, and Bo Jiang. 2022. "Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion" Remote Sensing 14, no. 4: 925. https://doi.org/10.3390/rs14040925
APA StyleYue, X., Chen, X., Zhang, W., Ma, H., Wang, L., Zhang, J., Wang, M., & Jiang, B. (2022). Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion. Remote Sensing, 14(4), 925. https://doi.org/10.3390/rs14040925