Greenspace to Meet People’s Demand: A Case Study of Beijing in 2005 and 2015
<p>Study area: Neighborhoods within fifth ring road in Beijing, China.</p> "> Figure 2
<p>Schematic diagram of false-change recognition. (<b>a</b>) The identified “changed part” was small and shared some boundaries with the original patch; (<b>b</b>) the identified “changed part” was relatively large but no larger than the original patch. It shared more than a quarter of its boundary with the original patch. In the equations, <math display="inline"><semantics> <mrow> <mi>C</mi> <mo> </mo> </mrow> </semantics></math> is the changed part; <math display="inline"><semantics> <mi>S</mi> </semantics></math> is the original patch; <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>C</mi> </msub> </mrow> </semantics></math> is the area of the changed part; <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mi>S</mi> </msub> </mrow> </semantics></math> is the area of original patch; <math display="inline"><semantics> <mrow> <mi>C</mi> <mstyle mathsize="100%" displaystyle="true"> <mo>∩</mo> </mstyle> <mo> </mo> <mi>S</mi> </mrow> </semantics></math> is the length of boundary shared by <span class="html-italic">C</span> and <span class="html-italic">S</span>; <span class="html-italic">T</span> is a fraction indicating size threshold relative to <span class="html-italic">A<sub>S</sub></span>; and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>c</mi> </msub> </mrow> </semantics></math> is the perimeter of <span class="html-italic">C</span>.</p> "> Figure 3
<p>Greenspace in 2005 and 2015, and its change. (<b>a</b>) Greenspace in 2005; (<b>b</b>) Greenspace in 2015; (<b>c</b>) Greenspace change from 2005–2015.</p> "> Figure 4
<p>Area of greenspace change from 2005 to 2015. Decrease in greenspace included vanished and shrinking patches. Increase in greenspace included new patches and existing patches that have been expanded.</p> "> Figure 5
<p>Change in differently sized greenspace patches from 2005 to 2015.</p> "> Figure 6
<p>Accessible greenspace and its change in the 3065 neighborhoods. We define accessible greenspace as the percentage of greenspace within a 500 m buffer along the boundary of each neighborhood. The two boxplots on the left represent accessible greenspace in 2005 and 2015 with average values of 21% and 24%, respectively. The two boxplots on the right represent the change in accessible greenspace from 2005 to 2015, which decreased in 574 neighborhoods by 3% and increased in 2491 neighborhoods by 5%.</p> "> Figure 7
<p>Difference in greenspace change during the period of 2005–2015 between neighborhoods with a higher than average greenspace accessibility in 2005 (21%) and all other neighborhoods.</p> "> Figure 8
<p>Greenspace supply and demand by neighborhood. (<b>a</b>) Accessible greenspace of neighborhood in 2005 (%); (<b>b</b>) Accessible greenspace of neighborhood in 2015 (%); (<b>c</b>) Accessible greenspace change of neighborhood from 2005–2015; (<b>d</b>) Demand level of greenspace by neighborhood.</p> "> Figure 9
<p>Association between greenspace increase with (<b>a</b>) greenspace supply in 2005 and (<b>b</b>) different levels of demand (high, medium, and low).</p> "> Figure 10
<p>Greenspace change in neighborhoods with less than average accessible greenspace (24%) and high demand.</p> ">
Abstract
:1. Introduction
1.1. Understanding Spatial Pattern of Greenspace and Its Association with Neighborhood Socioeconomic Status
1.2. Assessing Demand for Greenspace
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Analyses
2.3.1. Greenspace Change Detection
2.3.2. Greenspace Supply Index
2.3.3. Greenspace Demand Index
3. Results
3.1. Increased Greenspace with More Fragmentation
3.2. Improved Accessibility with Reduced Inequality
3.3. Greenspace Changes under Different Supply and Demand Levels
4. Discussion
4.1. Fragmented Greenspace, Increased Accessibility
4.2. Where to Put New Greenspace: Supply Considered, Demand Not Considered
4.3. Implications: Hotspot Areas for Future Greening
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canedoli, C.; Bullock, C.; Collier, M.J.; Joyce, D.; Padoa-Schioppa, E. Public Participatory Mapping of Cultural Ecosystem Services: Citizen Perception and Park Management in the Parco Nord of Milan (Italy). Sustainability 2017, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Thomas, G.; Sherin, A.P.; Ansar, S.; Zachariah, E.J. Analysis of urban heat island in Kochi, India, using a modified local climate zone classification. Procedia Environ. Sci. 2014, 21, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Lin, L.; Zhou, W.; Ma, K.; Pickett, S.T.A. A novel approach for quantifying particulate matter distribution on leaf surface by combining SEM and object-based image analysis. Remote Sens. Environ. 2016, 173, 156–161. [Google Scholar] [CrossRef]
- Xu, C.; Rahman, M.; Haase, D.; Wu, Y.; Su, M.; Pauleit, S. Surface runoff in urban areas: The role of residential cover and urban growth form. J. Clean. Prod. 2020, 262, 121421. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Ferenc, M.; Sedláček, O.; Fuchs, R. How to improve urban greenspace for woodland birds: Site and local-scale determinants of bird species richness. Urban Ecosyst. 2013, 17, 625–640. [Google Scholar] [CrossRef]
- Roces-Diaz, J.V.; Vayreda, J.; Banque-Casanovas, M.; Cuso, M.; Anton, M.; Bonet, J.A.; Brotons, L.; De Caceres, M.; Herrando, S.; Martinez de Aragon, J.; et al. Assessing the distribution of forest ecosystem services in a highly populated Mediterranean region. Ecol. Indic. 2018, 93, 986–997. [Google Scholar] [CrossRef] [Green Version]
- Andersson, E.; Barthel, S.; Borgstrom, S.; Colding, J.; Elmqvist, T.; Folke, C.; Gren, A. Reconnecting Cities to the Biosphere: Stewardship of Green Infrastructure and Urban Ecosystem Services. Ambio 2014, 43, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, D.C.; Hobbs, R.J. Cultural ecosystem services: Characteristics, challenges and lessons for urban green space research. Ecosyst. Serv. 2017, 25, 179–194. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Commun. Health 2008, 62, e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MilliontreeNYC. Million Trees NYC. 2007. Available online: https://www.milliontreesnyc.org (accessed on 25 June 2021).
- Beijing Gerdening and Greening Bureau. One Million Acres Plain Afforestation Project. Available online: http://yllhj.beijing.gov.cn/ztxx/mtjj/mtbd/201602/t20160206_115734.shtml (accessed on 25 June 2021).
- Shih, W.Y.; Ahmad, S.; Chen, Y.C.; Lin, T.P.; Mabon, L. Spatial relationship between land development pattern and intra-urban thermal variations in Taipei. Sustain. Cities Soc. 2020, 62, 102415. [Google Scholar] [CrossRef]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef]
- Evenson, K.R.; Wen, F.; Hillier, A.; Cohen, D.A. Assessing the contribution of parks to physical activity using global positioning system and accelerometry. Med. Sci. Sports Exerc. 2013, 45, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Song, P.H.; Kim, G.; Mayer, A.; He, R.Z.; Tian, G.H. Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- Li, L.J.; Du, Q.Y.; Ren, F.; Ma, X.Y. Assessing Spatial Accessibility to Hierarchical Urban Parks by Multi-Types of Travel Distance in Shenzhen, China. Int. J. Environ. Res. Public Health 2019, 16, 1038. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.D.; Tang, Y.H.; Wu, X.F. Evaluation of the Equity of Urban Park Green Space Based on Population Data Spatialization: A Case Study of a Central Area of Wuhan, China. Sensors 2019, 19, 2929. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Liu, Y.; Liu, X. Measuring spatial disparity in accessibility with a multi-mode method based on park green spaces classification in Wuhan, China. Appl. Geogr. 2018, 94, 251–261. [Google Scholar] [CrossRef]
- Xu, C.; Haase, D.; Pribadi, D.O.; Pauleit, S. Spatial variation of green space equity and its relation with urban dynamics: A case study in the region of Munich. Ecol. Indic. 2018, 93, 512–523. [Google Scholar] [CrossRef]
- Chen, B.; Qi, X.; Qiu, Z. Recreational use of urban forest parks: A case study in Fuzhou National Forest Park, China. J. For. Res. 2018, 23, 183–189. [Google Scholar] [CrossRef]
- Huang, J.H.; Hipp, J.A.; Marquet, O.; Alberico, C.; Fry, D.; Mazak, E.; Lovasi, G.S.; Robinson, W.R.; Floyd, M.F. Neighborhood characteristics associated with park use and park-based physical activity among children in low-income diverse neighborhoods in New York City. Prev. Med. 2020, 131, 105948. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Brown, G.; Zhong, G.; Liu, Y.; Mateo-Babiano, I. Factors influencing perceived access to urban parks: A comparative study of Brisbane (Australia) and Zhongshan (China). Habitat. Int. 2015, 50, 335–346. [Google Scholar] [CrossRef]
- Kukulska-Kozieł, A.; Szylar, M.; Cegielska, K.; Noszczyk, T.; Gawroński, K.; Dixon-Gough, R.; Jombach, S.; Valánszki, I.; Kovács, K.F. Towards three decades of spatial development transformation in two contrasting post-Soviet cities—Kraków and Budapest. Land Use Policy 2019, 85, 328–339. [Google Scholar] [CrossRef]
- Puplampu, D.A.; Boafo, Y.A. Exploring the impacts of urban expansion on green spaces availability and delivery of ecosystem services in the Accra metropolis. Environ. Chall. 2021, 5, 100283. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Jokimäki, J. A habitat island approach to conserving birds in urban landscapes: Case studies from southern and northern Europe. Biodivers. Conserv. 2001, 10, 2023–2043. [Google Scholar] [CrossRef]
- Xie, S.; Lu, F.; Cao, L.; Zhou, W.; Ouyang, Z. Multi-scale factors influencing the characteristics of avian communities in urban parks across Beijing during the breeding season. Sci. Rep. 2016, 6, 29350. [Google Scholar] [CrossRef]
- Turo, K.J.; Spring, M.R.; Sivakoff, F.S.; Delgado de la flor, Y.A.; Gardiner, M.M.; Garibaldi, L. Conservation in post-industrial cities: How does vacant land management and landscape configuration influence urban bees? J. Appl. Ecol. 2020, 58, 58–69. [Google Scholar] [CrossRef]
- Xie, S.; Wang, X.; Zhou, W.; Wu, T.; Qian, Y.; Lu, F.; Gong, C.; Zhao, H.; Ouyang, Z. The effects of residential greenspace on avian Biodiversity in Beijing. Glob. Ecol. Conserv. 2020, 24, e01223. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Hu, X.; Fu, F. The Heterogeneity of Air Temperature in Urban Residential Neighborhoods and Its Relationship with the Surrounding Greenspace. Remote Sens. 2018, 10, 965. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Zandieh, R.; Martinez, J.; Flacke, J. Older Adults’ Outdoor Walking and Inequalities in Neighbourhood Green Spaces Characteristics. Int. J. Environ. Res. Public Health 2019, 16, 4379. [Google Scholar] [CrossRef] [Green Version]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Macedo, J.; Haddad, M.A. Equitable distribution of open space: Using spatial analysis to evaluate urban parks in Curitiba, Brazil. Environ. Plan. B Plan. Des. 2016, 43, 1096–1117. [Google Scholar] [CrossRef]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Lin, B.B.; Fuller, R.A.; Bush, R.; Gaston, K.J.; Shanahan, D.F. Opportunity or orientation? Who uses urban parks and why. PLoS ONE 2014, 9, e87422. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Huang, G.; Pickett, S.T.A.; Cadenasso, M.L. 90 years of forest cover change in an urbanizing watershed: Spatial and temporal dynamics. Landsc. Ecol. 2011, 26, 645–659. [Google Scholar] [CrossRef]
- Baro, F.; Calderon-Argelich, A.; Langemeyer, J.; Connolly, J.J.T. Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy 2019, 102, 54–64. [Google Scholar] [CrossRef]
- Boone, C.G.; Buckley, G.L.; Grove, J.M.; Sister, C. Parks and People: An Environmental Justice Inquiry in Baltimore, Maryland. Ann. Assoc. Am. Geogr. 2009, 99, 767–787. [Google Scholar] [CrossRef]
- Lara-Valencia, F.; Garcia-Perez, H. Disparities in the provision of public parks in neighbourhoods with varied Latino composition in the Phoenix Metropolitan Area. Local Environ. 2018, 23, 1107–1120. [Google Scholar] [CrossRef]
- You, H. Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat. Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Guo, T.D.; Morgenroth, J.; Conway, T.; Xu, C. City-wide canopy cover decline due to residential property redevelopment in Christchurch, New Zealand. Sci. Total Environ. 2019, 681, 202–210. [Google Scholar] [CrossRef]
- Qian, Y.G.; Li, Z.Q.; Zhou, W.Q.; Chen, Y.Y. Quantifying spatial pattern of urban greenspace from a gradient perspective of built-up age. Phys. Chem. Earth 2019, 111, 78–85. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Qian, Y.; Li, W.; Han, L. Quantifying and characterizing the dynamics of urban greenspace at the patch level: A new approach using object-based image analysis. Remote Sens. Environ. 2018, 204, 94–108. [Google Scholar] [CrossRef]
- Casey, J.A.; James, P.; Cushing, L.; Jesdale, B.M.; Morello-Frosch, R. Race, Ethnicity, Income Concentration and 10-Year Change in Urban Greenness in the United States. Int. J. Environ. Res. Public Health 2017, 14, 1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timilsina, S.; Aryal, J.; Kirkpatrick, J.B. Mapping Urban Tree Cover Changes Using Object-Based Convolution Neural Network (OB-CNN). Remote Sens. 2020, 12, 3017. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Xu, L.; Han, B. The impact of socio-demographic, environmental, and individual factors on urban park visitation in Beijing, China. J. Clean. Prod. 2017, 163, S181–S188. [Google Scholar] [CrossRef]
- Yen, Y.; Wang, Z.; Shi, Y.; Xu, F.; Soeung, B.; Sohail, M.T.; Rubakula, G.; Juma, S.A. The predictors of the behavioral intention to the use of urban green spaces: The perspectives of young residents in Phnom Penh, Cambodia. Habitat. Int. 2017, 64, 98–108. [Google Scholar] [CrossRef]
- Mertens, L.; Van Cauwenberg, J.; Veitch, J.; Deforche, B.; Van Dyck, D. Differences in park characteristic preferences for visitation and physical activity among adolescents: A latent class analysis. PLoS ONE 2019, 14, e0212920. [Google Scholar] [CrossRef] [PubMed]
- Contesse, M.; van Vliet, B.J.M.; Lenhart, J. Is urban agriculture urban green space? A comparison of policy arrangements for urban green space and urban agriculture in Santiago de Chile. Land Use Policy 2018, 71, 566–577. [Google Scholar] [CrossRef]
- Martinho da Silva, I.; Oliveira Fernandes, C.; Castiglione, B.; Costa, L. Characteristics and motivations of potential users of urban allotment gardens: The case of Vila Nova de Gaia municipal network of urban allotment gardens. Urban For. Urban Green. 2016, 20, 56–64. [Google Scholar] [CrossRef]
- Zinia, N.J.; McShane, P. Ecosystem services management: An evaluation of green adaptations for urban development in Dhaka, Bangladesh. Landsc. Urban Plan. 2018, 173, 23–32. [Google Scholar] [CrossRef]
- Andrews, B.; Ferrini, S.; Bateman, I. Good parks—Bad parks: The influence of perceptions of location on WTP and preference motives for urban parks. J. Environ. Econ. Manag. 2017, 6, 204–224. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Mallios, Z.; Latinopoulos, P. Valuing the benefits of an urban park project: A contingent valuation study in Thessaloniki, Greece. Land Use Policy 2016, 55, 130–141. [Google Scholar] [CrossRef]
- Gu, X.K.; Li, Q.; Chand, S. Factors influencing residents’ access to and use of country parks in Shanghai, China. Cities 2020, 97, 102501. [Google Scholar] [CrossRef]
- Shan, X.Z. Association between the time patterns of urban green space visitations and visitor characteristics in a high-density, subtropical city. Cities 2020, 97, 102562. [Google Scholar] [CrossRef]
- Sun, R.H.; Li, F.; Chen, L.D. A demand index for recreational ecosystem services associated with urban parks in Beijing, China. J. Environ. Manag. 2019, 251. [Google Scholar] [CrossRef]
- Ghahramani, M.; Galle, N.J.; Duarte, F.; Ratti, C.; Pilla, F. Leveraging artificial intelligence to analyze citizens’ opinions on urban green space. City Environ. Interact. 2021, 10, 100058. [Google Scholar] [CrossRef]
- Xing, L.; Liu, Y.; Liu, X.; Wei, X.; Mao, Y. Spatio-temporal disparity between demand and supply of park green space service in urban area of Wuhan from 2000 to 2014. Habitat. Int. 2018, 71, 49–59. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau Statistics (BMBS). The Changes and Characteristics of Beijing’s Population Development in 2014. Available online: http://tjj.beijing.gov.cn/zxfbu/202002/t20200216_1636952.html (accessed on 25 June 2021).
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T.A. Quantifying spatiotemporal pattern of urban greenspace: New insights from high resolution data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, W.; Zheng, Z.; Wang, J.; Tian, Y. Characterizing variations of greenspace landscapes in relation to neighborhood characteristics in urban residential area of Beijing, China. Landsc. Ecol. 2019, 35, 203–222. [Google Scholar] [CrossRef]
- Gaode Map. The Boundary of Neighborhoods. 2018. Available online: https://ditu.amap.com (accessed on 25 June 2021).
- Lianjia Web. The House Price and Age of Neighborhoods. 2018. Available online: http://bj.lianjia.com (accessed on 25 June 2021).
- Tu, X. Impact of Urban Park Characteristics and Spatial Patterns Recreational Services to Residents: The Case Study of Beijing. Ph.D. Thesis, Beijing Normal University, Beijing, China, 1 December 2019. [Google Scholar]
- Beijing Municipal Bureau Statistics (BMBS). Beijing Statistical Yearbook in 2006. Available online: http://tjj.beijing.gov.cn (accessed on 25 June 2021).
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Stow, D.A. Reducing the effects of misregistration on pixel-level change detection. Int. J. Remote Sens. 1999, 20, 2477–2483. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, B.; Qin, J. Multi-Level Spatial Analysis for Change Detection of Urban Vegetation at Individual Tree Scale. Remote Sens. 2014, 6, 9086–9103. [Google Scholar] [CrossRef] [Green Version]
- Peschardt, K.K.; Schipperijn, J.; Stigsdotter, U.K. Use of Small Public Urban Green Spaces (SPUGS). Urban For. Urban Green. 2012, 11, 235–244. [Google Scholar] [CrossRef]
- Wilkerson, M.L.; Mitchell, M.G.E.; Shanahan, D.; Wilson, K.A.; Ives, C.D.; Lovelock, C.E.; Rhodes, J.R. The role of socio-economic factors in planning and managing urban ecosystem services. Ecosyst. Serv. 2018, 31, 102–110. [Google Scholar] [CrossRef]
- Boone, C.G. Improving resolution of census data in metropolitan areas using a dasymetric approach: Applications for the Baltimore Ecosystem Study. Cities Environ. 2008, 1, 3. [Google Scholar] [CrossRef]
- Tu, X.; Huang, G.; Wu, J. Contrary to Common Observations in the West, Urban Park Access Is Only Weakly Related to Neighborhood Socioeconomic Conditions in Beijing, China. Sustainability 2018, 10, 1115. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Wang, J.; Sun, L.; Lv, C. Construction and optimization of green space ecological networks in urban fringe areas: A case study with the urban fringe area of Tongzhou district in Beijing. J. Clean. Prod. 2020, 276, 124266. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Qian, Y.; Pickett, S.T.A.; Li, W.; Han, L. The rapid but “invisible” changes in urban greenspace: A comparative study of nine Chinese cities. Sci. Total Environ. 2018, 627, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Aryal, J.; Tan, L.; Jin, L.; Gao, Z.; Wang, Y. Comparison of changes in vegetation and land cover types between Shenzhen and Bangkok. Land Degrad Dev. 2020, 32, 1192–1204. [Google Scholar] [CrossRef]
- Cheng, X.L.; Nizamani, M.M.; Jim, C.Y.; Balfour, K.; Da, L.J.; Qureshi, S.; Zhu, Z.X.; Wang, H.-F. Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China. Remote Sens. 2020, 12, 3477. [Google Scholar] [CrossRef]
- Plummer, K.E.; Gillings, S.; Siriwardena, G.M.; Villard, M.A. Evaluating the potential for bird-habitat models to support biodiversity-friendly urban planning. J. Appl. Ecol. 2020, 57, 1902–1914. [Google Scholar] [CrossRef]
- Shekhar, S.; Aryal, J. Role of geospatial technology in understanding urban green space of Kalaburagi city for sustainable planning. Urban For. Urban Green. 2019, 46, 126450. [Google Scholar] [CrossRef]
- Mathieu, R.; Aryal, J.; Chong, A.K. Object-based classification of IKONOS imagery for mapping. Sensors 2007, 7, 2860–2880. [Google Scholar] [CrossRef] [Green Version]
- Garrison, J.D. Seeing the park for the trees: New York’s ‘‘Million Trees’’ campaign vs. the deep roots of environmental inequality. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 914–930. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Zeng, Y.; Yu, C.; Zheng, S. The rising and heterogeneous demand for urban green space by Chinese urban residents: Evidence from Beijing. J. Clean. Prod. 2021, 313, 127781. [Google Scholar] [CrossRef]
False Change Identification Types | Types of False Change | Existing False Change | No False Change | Accuracy of the False Change Identification |
---|---|---|---|---|
Change from greenspace | 87 | 13 | 87% | |
Change to greenspace | 89 | 11 | 89% | |
Change from greenspace | 85 | 15 | 85% | |
Change to greenspace | 81 | 19 | 81% | |
Change from greenspace | 79 | 21 | 79% | |
Change to greenspace | 85 | 15 | 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Huang, G. Greenspace to Meet People’s Demand: A Case Study of Beijing in 2005 and 2015. Remote Sens. 2021, 13, 4310. https://doi.org/10.3390/rs13214310
Chen Z, Huang G. Greenspace to Meet People’s Demand: A Case Study of Beijing in 2005 and 2015. Remote Sensing. 2021; 13(21):4310. https://doi.org/10.3390/rs13214310
Chicago/Turabian StyleChen, Zhanghao, and Ganlin Huang. 2021. "Greenspace to Meet People’s Demand: A Case Study of Beijing in 2005 and 2015" Remote Sensing 13, no. 21: 4310. https://doi.org/10.3390/rs13214310
APA StyleChen, Z., & Huang, G. (2021). Greenspace to Meet People’s Demand: A Case Study of Beijing in 2005 and 2015. Remote Sensing, 13(21), 4310. https://doi.org/10.3390/rs13214310