On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model
<p>IRI modeled (TBT-2012+SA default option) vertical profile of <span class="html-italic">T</span><sub>e</sub> (green curve) at 45° N of latitude and 0° of longitude for 1 June 2012 at 12 local time (LT). The five fixed anchor points at 350, 550, 850, 1400, and 2000 km of altitude are highlighted along with the additional anchor point <span class="html-italic">T</span><sub>e,m</sub>.</p> "> Figure 2
<p>Joint histograms between <span class="html-italic">T</span><sub>e</sub> values measured by Swarm and modeled by IRI (TBT-2012+SA default option): (left panels) original Swarm-recorded values, (right panels) Swarm values corrected with Lomidze et al. [<a href="#B24-remotesensing-13-04077" class="html-bibr">24</a>]. From top to bottom, the analysis refers to Swarm A, B, and C. In each panel, the number of total counts is reported in the lower right corner.</p> "> Figure 3
<p>Statistical distributions of the residuals between <span class="html-italic">T</span><sub>e</sub> values measured by Swarm and modeled by IRI (TBT-2012+SA default option): (left panels, in blue) original Swarm-recorded values, (right panels, in green) Swarm values corrected with Lomidze et al. [<a href="#B24-remotesensing-13-04077" class="html-bibr">24</a>]. From top to bottom, the analysis refers to Swarm A, B, and C. In each panel, some statistical metrics are reported in the upper left corner.</p> "> Figure 4
<p>Comparison between <span class="html-italic">T</span><sub>e</sub> data observed by Jicamarca ISR (12.0°S, 76.8°W, QD latitude 0.2°N) at around 510 km of altitude (boxplots), Swarm B satellite (green line), Swarm B corrected with Lomidze (black line), and those modeled by IRI (TBT-2012+SA default option) (orange line). Both measured and modeled data are binned as a function of MLT (<span class="html-italic">x</span>-axis) in bins 15-minutes wide, and of the season by selecting data around the equinoxes and solstices (each panel represents a different season). ISR data are represented as boxplots in which the red horizontal line is the median; the 25th and 75th percentiles are represented as the lower and upper limits of each box; the 5th and 95th percentiles are shown as lines extending below and above each box (whiskers). Green shaded bars at the bottom of each panel represent the number of ISR data falling in that bin. Conversely, for Swarm and IRI, only the median values are represented as solid curves.</p> "> Figure 5
<p>Same as <a href="#remotesensing-13-04077-f004" class="html-fig">Figure 4</a> but for Arecibo ISR (18.2°N, 66.4°W, QD latitude 27.0°N).</p> "> Figure 6
<p>Same as <a href="#remotesensing-13-04077-f004" class="html-fig">Figure 4</a> but for Millstone Hill ISR (42.6°N, 71.5°W, QD latitude 51.8°N).</p> "> Figure 7
<p>Statistical geographic trends of <span class="html-italic">T</span><sub>e</sub> measured by Swarm B after applying the Lomidze et al. [<a href="#B24-remotesensing-13-04077" class="html-bibr">24</a>] correction (first column), of the corresponding values modeled by IRI (second column), and of the percentage of normalized residuals between measured and modeled values (third column). Those represented are median values binned in geographic coordinates; 2.5° in latitude, 5° in longitude. The first row pertains to all MLTs (i.e., to the entire Swarm B dataset), second row to MLTs around dawn, third row to daytime MLTs, and fourth row to nighttime MLTs.</p> "> Figure 8
<p>Statistical diurnal trends of <span class="html-italic">T</span><sub>e</sub> measured by Swarm B after applying the Lomidze et al. [<a href="#B24-remotesensing-13-04077" class="html-bibr">24</a>] correction (first column), of the corresponding values modeled by IRI (second column), and of the percentage residuals between measured and modeled values (third column). Those represented are median values binned in QD magnetic coordinates; (<span class="html-italic">x</span>-axis) 15 minutes in MLT, (<span class="html-italic">y</span>-axis) 2.5° in QD latitude. First row independently of the season (i.e., for the entire Swarm B dataset), second row for the March equinox, third row for the June solstice, fourth row for the September equinox, and fifth row for the December solstice.</p> "> Figure 9
<p>Conditioned probability density function of <span class="html-italic">T</span><sub>e</sub> values measured by Swarm satellites (left panels), and after applying the Lomidze et al. [<a href="#B24-remotesensing-13-04077" class="html-bibr">24</a>] correction (right panels), at fixed IRI-modeled <span class="html-italic">T</span><sub>e</sub> values. From top to bottom, the analysis refers to Swarm A, B, and C. The black circles refer to the median values of measured and corrected Swarm <span class="html-italic">T</span><sub>e</sub> at fixed IRI-modeled <span class="html-italic">T</span><sub>e</sub> values. Error bars are the median absolute deviation. The magenta lines are linear regression fits for IRI <span class="html-italic">T</span><sub>e</sub> below 2200 K, with corresponding parameters shown in the lower right boxes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. ESA Swarm In-Situ Electron Temperature Data and Application of the Lomidze Correction
2.2. Electron Temperature Observations by Incoherent Scatter Radars
2.3. Electron Temperature Description by the IRI Model
3. Results
3.1. Overall Statistical Comparison between Measured and Modeled Electron Temperature Values
3.2. Statistical Comparison against ISRs Data
- March Equinox: 35 ≤ doy ≤ 125;
- June Solstice: 126 ≤ doy ≤ 217;
- September Equinox: 218 ≤ doy ≤ 309;
- December Solstice: doy ≤ 34 OR doy ≥ 310.
- 5th percentile, i.e., the lower whisker;
- 25th percentile, i.e., the first quartile;
- 50th percentile, i.e., the second quartile, representative of the median;
- 75th percentile i.e., the third quartile;
- 95th percentile, i.e., the upper whisker.
3.3. Statistical Trends of Swarm-Measured Electron Temperature Values and Comparison with IRI-Modeled Ones
4. Discussion
5. Conclusions
- improves the agreement between Swarm data and corresponding ones modeled by IRI when the entire dataset is considered, for every Swarm satellite. This is attested by the average 400 K improvement in the mean residuals between Swarm and IRI after the Lomidze correction application;
- does not alter either the dispersion of Swarm data around the mean and the correlation between Swarm and IRI, due to the linear character of the correction;
- reduces the Swarm data RMSE from about 690–780 K to about 440–530 K, and RRMSE from about 27–29% to about 20–23%, when compared to IRI data;
- generally improves the agreement between Swarm and ISR data. The improvement is particularly evident at Millstone Hill while it is lower at Arecibo and even lower at Jicamarca. Moreover, the correction is more effective during daytime than nighttime;
- does not alter the linear relation trend between measured and modeled Te values in the range below 2200 K, but it improves the corresponding slope (closer to 1) and intercept (closer to 0) values.
- the largest differences emerge at magnetic equator latitudes at dawn, and at low and mid latitudes during daytime and nighttime, respectively;
- IRI needs to be improved in the description of the morning peak at low latitudes. This can be achieved by increasing the order of spherical harmonics underlying the IRI Te description;
- IRI needs to be improved in summer daytime for both hemispheres, and in the description of the high Te values characteristic of daytime auroral oval latitudes;
- IRI data never go beyond about 4300 K, while Swarm data show values well beyond 5000 K, and in general Swarm values are higher than IRI ones.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIL-1995 | Bilitza—1995 model |
doy | Day of the year |
ESA | European Space Agency |
EUV | Extreme ultra-violet |
GPS | Global positioning system |
HG | High gain |
IQR | Inter-quartile range |
IRI | International Reference Ionosphere |
ISR | Incoherent Scatter Radar |
LEO | Low-Earth-orbit |
LP | Langmuir Probe |
LT | Local time |
MLT | Magnetic local time |
Ne | Electron density |
QD | Quasi dipole |
R | Pearson correlation coefficient |
RMSE | Root mean square error |
RRMSE | Relative root mean square error |
TBT-2012 | Truhlik Bilitza Triskova—2012 model |
TBT-2012+SA | Truhlik Bilitza Triskova—2012 + Solar Activity model |
Te | Electron temperature |
Ti | Ion temperature |
Tn | Neutral temperature |
References
- Willmore, A.P. Electron and ion temperatures in the ionosphere. Space Sci. Rev. 1970, 11, 607–670. [Google Scholar] [CrossRef] [Green Version]
- Rishbeth, H.; Garriott, O. Introduction to Ionospheric Physics; International Geophysics Series v. 14; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Ratcliffe, J.A. An Introduction to the Ionosphere and Magnetosphere; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Banks, P.M. Ion temperature in the upper atmosphere. J. Geophys. Res. Space Phys. 1967, 72, 3365–3385. [Google Scholar] [CrossRef]
- Roble, R. The calculated and observed diurnal variation of the ionosphere over Millstone Hill on 23–24 March 1970. Planet. Space Sci. 1975, 23, 1017–1033. [Google Scholar] [CrossRef]
- Schunk, R.W.; Nagy, A.F. Electron temperatures in the region of the ionosphere: Theory and observations. Rev. Geophys. 1978, 16, 355–399. [Google Scholar] [CrossRef]
- Bilitza, D. Electron and ion temperature data for ionospheric modelling. Adv. Space Res. 1991, 11, 139–148. [Google Scholar] [CrossRef]
- Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International reference ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Bilitza, D. IRI the International Standard for the Ionosphere. Adv. Radio Sci. 2018, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kakinami, Y.; Lin, C.C.H.; Liu, J.Y.; Kamogawa, M.; Watanabe, S.; Parrot, M. Daytime longitudinal structures of electron density and temperature in the topside ionosphere observed by the Hinotori and DEMETER satellites. J. Geophys. Res. Space Phys. 2011, 116, A05316. [Google Scholar] [CrossRef]
- Ma, H.; Liu, L.; Chen, Y.; Le, H.; Li, Q.; Zhang, H. Longitudinal differences in electron temperature on both sides of zero declination line in the mid-latitude topside ionosphere. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028471. [Google Scholar] [CrossRef]
- Slominska, E.; Rothkaehl, H. Mapping seasonal trends of electron temperature in the topside ionosphere based on DEMETER data. Adv. Space Res. 2013, 52, 192–204. [Google Scholar] [CrossRef]
- Brace, L.; Theis, R.; Hoegy, W. Ionospheric electron temperature at solar maximum. Adv. Space Res. 1987, 7, 99–106. [Google Scholar] [CrossRef]
- Oyama, K.-I.; Balan, N.; Watanabe, S.; Takahashi, T.; Isoda, F.; Bailey, G.J.; Oya, H. Morning overshoot of Te enhanced by downward plasma drift in the equatorial topside ionosphere. J. Geomagn. Geoelectr. 1996, 48, 959–966. [Google Scholar] [CrossRef]
- Stolle, C.; Liu, H.; Truhlík, V.; Luehr, H.; Richards, P.G. Solar flux variation of the electron temperature morning overshoot in the equatorialFregion. J. Geophys. Res. Space Phys. 2011, 116, A04308. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Park, J.; Kwak, Y.; Oyama, K.; Minow, J.I.; Lee, J. Morning overshoot of electron temperature as observed by the swarm constellation and the international space station. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027299. [Google Scholar] [CrossRef]
- Brace, L.H. Solar cycle variations in F-region Te in the vicinity of the midlatitude trough based on AE-C measurements at solar minimum and DE-2 measurements at solar maximum. Adv. Space Res. 1990, 10, 83–88. [Google Scholar] [CrossRef]
- Prölss, G.W. Subauroral electron temperature enhancement in the nighttime ionosphere. Ann. Geophys. 2006, 24, 1871–1885. [Google Scholar] [CrossRef] [Green Version]
- Brace, L.; Theis, R. Global empirical models of ionospheric electron temperature in the upper F-region and plasmasphere based on in situ measurements from the atmosphere explorer-c, isis-1 and isis-2 satellites. J. Atmos. Terr. Phys. 1981, 43, 1317–1343. [Google Scholar] [CrossRef]
- Pavlov, A.V.; Abe, T.; Oyama, K.-I. Comparison of the measured and modelled electron densities and temperatures in the ionosphere and plasmasphere during 20-30 January 1993. Ann. Geophys. 2000, 18, 1257–1262. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.G.; Buonsanto, M.J.; Reinisch, B.W.; Holt, J.; Fennelly, J.A.; Scali, J.L.; Comfort, R.H.; Germany, G.A.; Spann, J.; Brittnacher, M.; et al. On the relative importance of convection and temperature to the behavior of the ionosphere in North America during 6–12 January 1997. J. Geophys. Res. Space Phys. 2000, 105, 12763–12776. [Google Scholar] [CrossRef]
- Bilitza, D.; Truhlik, V.; Richards, P.; Abe, T.; Triskova, L. Solar cycle variations of mid-latitude electron density and temperature: Satellite measurements and model calculations. Adv. Space Res. 2007, 39, 779–789. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 2006, 58, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Truhlik, V.; Bilitza, D.; Triskova, L. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI. Earth Planets Space 2012, 64, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- National Space Institute, Technical University of Denmark. Swarm L1b Product Definition; SW-RS-DSC-SY-0007; National Space Institute, Technical University of Denmark: Kongens Lyngby, Denmark, 2018; Available online: https://earth.esa.int/documents/10174/1514862/Swarm_L1b_Product_Definition (accessed on 10 October 2021).
- Laundal, K.M.; Richmond, A.D. Magnetic coordinate systems. Space Sci. Rev. 2017, 206, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Pignalberi, A.; Aksonova, K.D.; Zhang, S.-R.; Truhlik, V.; Gurram, P.; Pavlou, C. Climatological study of the ion temperature in the ionosphere as recorded by Millstone Hill incoherent scatter radar and comparison with the IRI model. Adv. Space Res. 2021, 68, 2186–2203. [Google Scholar] [CrossRef]
- Bilitza, D. Models for ionospheric electron and ion temperature. In International Reference Ionosphere-IRI 79; Report UAG-82; Rawer, K., Lincoln, J.V., Conkright, R.O., Eds.; World Data Center A for Solar-Terrestrial Physics: Boulder, CO, USA, 1981; p. 245. Available online: http://www.irimodel.org/ (accessed on 10 October 2021).
- Bilitza, D.; Brace, L.; Theis, R. Modelling of ionospheric temperature profiles. Adv. Space Res. 1985, 5, 53–58. [Google Scholar] [CrossRef]
- Bilitza, D. International Reference Ionosphere; Report 90-22; National Space Science Data Center: Greenbelt, MD, USA, 1990; Available online: http://irimodel.org/docs/IRI1990pp0-84.pdf (accessed on 10 October 2021).
- Booker, H.G. Fitting of multi-region ionospheric profiles of electron density by a single analytic function of height. J. Atmos. Terr. Phys. 1977, 39, 619–623. [Google Scholar] [CrossRef]
- Spenner, K.; and Plugge, R. Empirical model of global electron temperature distribution between 300 and 700 Km based on data from Aeros-A. J. Geophys. 1979, 46, 43–56. Available online: https://journalgeophysicsjournalcom/JofG/article/view/286 (accessed on 10 October 2021).
- Bilitza, D. International reference ionosphere 2000. Radio Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Truhlík, V.; Třísková, L.; Šmilauer, J.; Afonin, V. Global empirical model of electron temperature in the outer ionosphere for period of high solar activity based on data of three Intercosmos satellites. Adv. Space Res. 2000, 25, 163–169. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.J.; Truhlik, V.; Richards, P.; McKinnell, L.-A.; Reinisch, B.W. The international reference ionosphere 2012—A model of international collaboration. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Truhlik, V.; Bilitza, D.; Triskova, L. Latitudinal variation of the topside electron temperature at different levels of solar activity. Adv. Space Res. 2009, 44, 693–700. [Google Scholar] [CrossRef]
- Truhlík, V.; Třísková, L.; Smilauer, J. Improved electron temperature model and comparison with satellite data. Adv. Space Res. 2001, 27, 101–109. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Oyama, K.-I.; Watanabe, S.; Su, Y.; Takahashi, T.; Hirao, K. Season, local time, and longitude variations of electron temperature at the height of ∼600 km in the low latitude region. Adv. Space Res. 1996, 18, 269–278. [Google Scholar] [CrossRef]
- Hoegy, W.R. Probe and radar electron temperatures in an isotropic nonequilibrium plasma. J. Geophys. Res. Space Phys. 1971, 76, 8333–8340. [Google Scholar] [CrossRef] [Green Version]
- Oyama, K.-I.; Lee, C.H.; Fang, H.K.; Cheng, C.Z. Means to remove electrode contamination effect of Langmuir probe measurement in space. Rev. Sci. Instrum. 2012, 83, 55113. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Holt, J.M. Ionospheric plasma temperatures during 1976–2001 over Millstone Hill. Adv. Space Res. 2004, 33, 963–969. [Google Scholar] [CrossRef]
- Pignalberi, A.; Habarulema, J.; Pezzopane, M.; Rizzi, R. On the development of a method for updating an empirical climatological ionospheric model by means of assimilated vTEC measurements from a GNSS receiver network. Space Weather 2019, 17, 1131–1164. [Google Scholar] [CrossRef] [Green Version]
- Schunk, R.; Nagy, A.F. Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Giannattasio, F.; De Michelis, P.; Pignalberi, A.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Parallel electrical conductivity in the topside ionosphere derived from swarm measurements. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028452. [Google Scholar] [CrossRef]
- Giannattasio, F.; Pignalberi, A.; De Michelis, P.; Coco, I.; Consolini, G.; Pezzopane, M.; Tozzi, R. Dependence of parallel electrical conductivity in the topside ionosphere on solar and geomagnetic activity. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029138. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. Large-scale characteristics of field-aligned currents associated with substorms. J. Geophys. Res. Space Phys. 1978, 83, 599–615. [Google Scholar] [CrossRef]
- Milan, S.E.; Clausen, L.B.N.; Coxon, J.; Carter, J.; Walach, M.-T.; Laundal, K.M.; Østgaard, N.; Tenfjord, P.; Reistad, J.P.; Snekvik, K.; et al. Overview of solar wind-magnetosphere-ionosphere-atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 2017, 206, 547–573. [Google Scholar] [CrossRef]
- Zmuda, A.J.; Martin, J.H.; Heuring, F.T. Transverse magnetic disturbances at 1100 km in the auroral region. J. Geophys. Res. Space Phys. 1966, 71, 5033–5045. [Google Scholar] [CrossRef]
- Brinton, H.C.; Grebowsky, J.M.; Brace, L.H. The high-latitude winter region at 300 km: Thermal plasma observations from AE-C. J. Geophys. Res. Space Phys. 1978, 83, 4767–4776. [Google Scholar] [CrossRef]
- Foster, J.C. An empirical electric field model derived from Chatanika radar data. J. Geophys. Res. Space Phys. 1983, 88, 981–987. [Google Scholar] [CrossRef]
- Dyson, P.L.; Winningham, J.D. Top side ionospheric spread and particle precipitation in the day side magnetospheric clefts. J. Geophys. Res. Space Phys. 1974, 79, 5219–5230. [Google Scholar] [CrossRef]
- McPherron, R.; Russell, C.T.; Aubry, M.P. Satellite studies of magnetospheric substorms on 15 August 1968: Phenomenological model for substorms. J. Geophys. Res. Space Phys. 1973, 78, 3131–3149. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Burns, A.G.; Killeen, T.L. A numerical study of the response of ionospheric electron temperature to geomagnetic activity. J. Geophys. Res. Space Phys. 2006, 111, A11301. [Google Scholar] [CrossRef] [Green Version]
- Fujii, R.; Iijima, T.; Potemra, T.A.; Sugiura, M. Seasonal dependence of large-scale Birkeland currents. Geophys. Res. Lett. 1981, 8, 1103–1106. [Google Scholar] [CrossRef]
- Liou, K.; Newell, P.T.; Meng, C.-I. Seasonal effects on auroral particle acceleration and precipitation. J. Geophys. Res. Space Phys. 2001, 106, 5531–5542. [Google Scholar] [CrossRef]
- Papitashvili, V.; Christiansen, F.; Neubert, T. A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophys. Res. Lett. 2002, 29, 28-1–28-4. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, F.; Papitashvili, V.; Neubert, T. Seasonal variations of high-latitude field-aligned currents inferred from Ørsted and Magsat observations. J. Geophys. Res. Space Phys. 2002, 107, SMP5-1–SMP5-13. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ma, S.Y. Solar zenith angle and merging electric field control of field-aligned currents: A statistical study of the Southern Hemisphere. J. Geophys. Res. Space Phys. 2005, 110, 306. [Google Scholar] [CrossRef]
- McDonald, J.; Williams, P. The relationship between ionospheric temperature, electron density and solar activity. J. Atmos. Terr. Phys. 1980, 42, 41–44. [Google Scholar] [CrossRef]
- Kakinami, Y.; Watanabe, S.; Liu, J.-Y.; Balan, N. Correlation between electron density and temperature in the topside ionosphere. J. Geophys. Res. Space Phys. 2011, 116, A12331. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Wang, W.; Burns, A.G.; Yue, X.; Zhu, F. The correlation between electron temperature and density in the topside ionosphere during 2006-2009. J. Geophys. Res. Space Phys. 2015, 120, 10724–10739. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Carter, B.; Currie, J.; Norman, R.; Wu, S.; Zhang, K. A deep neural network model of global topside electron temperature using incoherent scatter radars and its application to GNSS radio occultation. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027263. [Google Scholar] [CrossRef]
- Kitamura, N.; Ogawa, Y.; Nishimura, Y.; Terada, N.; Ono, T.; Shinbori, A.; Kumamoto, A.; Truhlík, V.; Smilauer, J. Solar zenith angle dependence of plasma density and temperature in the polar cap ionosphere and low-altitude magnetosphere during geomagnetically quiet periods at solar maximum. J. Geophys. Res. Space Phys. 2011, 116, A08227. [Google Scholar] [CrossRef]
- Pignalberi, A.; Coco, I.; Giannattasio, F.; Pezzopane, M.; De Michelis, P.; Consolini, G.; Tozzi, R. A new ionospheric index to investigate electron temperature small-scale variations in the topside ionosphere. Universe 2021, 7, 290. [Google Scholar] [CrossRef]
- Pignalberi, A. TITIPy: A Python tool for the calculation and mapping of topside ionosphere turbulence indices. Comput. Geosci. 2021, 148, 104675. [Google Scholar] [CrossRef]
Publisher’s Note:: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Consolini, G.; De Michelis, P.; Tozzi, R. On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sens. 2021, 13, 4077. https://doi.org/10.3390/rs13204077
Pignalberi A, Giannattasio F, Truhlik V, Coco I, Pezzopane M, Consolini G, De Michelis P, Tozzi R. On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sensing. 2021; 13(20):4077. https://doi.org/10.3390/rs13204077
Chicago/Turabian StylePignalberi, Alessio, Fabio Giannattasio, Vladimir Truhlik, Igino Coco, Michael Pezzopane, Giuseppe Consolini, Paola De Michelis, and Roberta Tozzi. 2021. "On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model" Remote Sensing 13, no. 20: 4077. https://doi.org/10.3390/rs13204077
APA StylePignalberi, A., Giannattasio, F., Truhlik, V., Coco, I., Pezzopane, M., Consolini, G., De Michelis, P., & Tozzi, R. (2021). On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sensing, 13(20), 4077. https://doi.org/10.3390/rs13204077