Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study
<p>Interplanetary space observations and geomagnetic response at high latitudes on 8 September 2017. From top to bottom: (<b>a</b>) Interplanetary Magnetic Field (IMF) intensity (black), IMF <span class="html-italic">B</span><sub>y,IMF</sub> component (blue) and IMF <span class="html-italic">B</span><sub>z,IMF</sub> component (red); (<b>b</b>) solar wind (SW) velocity <span class="html-italic">V</span><sub>SW</sub> (black) and SW dynamic pressure <span class="html-italic">P</span> (red); and (<b>c</b>) <span class="html-italic">AE</span> (black), <span class="html-italic">AU</span> (green) and the <span class="html-italic">AL</span> (red) indices. IMF and SW data are taken from the OMNI database.</p> "> Figure 2
<p>GNSS data from the receiver located at SANAE IV base (SNA0) on 8 September 2017. From top to bottom: Total Electron Content (TEC, <b>a</b>), Rate of TEC change (ROT, <b>b</b>), phase scintillation index (<span class="html-italic">σ</span><sub>φ</sub>, <b>c</b>) and amplitude scintillation index (<span class="html-italic">S</span><sub>4</sub>, <b>d</b>). Different colors refers to different satellites in view of the receiver. Red vertical line highlights the local magnetic noon.</p> "> Figure 3
<p>GNSS data from the receiver located at Concordia station (DMC0) on 8 September 2017. From top to bottom: Total Electron Content (TEC, <b>a</b>), Rate of TEC change (ROT, <b>b</b>), phase scintillation index (<span class="html-italic">σ</span><sub>φ</sub>, <b>c</b>) and amplitude scintillation index (<span class="html-italic">S</span><sub>4</sub>, d). Different colors refer to different satellites in view of the receiver. Red vertical line highlights the local magnetic noon.</p> "> Figure 4
<p>Polar-view maps in AACGM latitude and MLT of the austral auroral radiance as measured by SSUSI instrument in the LBHL band at 12:22 UT (<b>a</b>), 13:06 UT (<b>b</b>), 14:04 UT (<b>c</b>), 14:47 UT (<b>d</b>), 15:47 UT (<b>e</b>) and 16:25 UT (<b>f</b>) on 8 September 2017. Each map also reports the auroral oval boundary location (red dashed contours), as retrieved from the auroral radiance data, the amplitude scintillations greater than 0.1 (<span class="html-italic">S</span><sub>4</sub>, magenta diamonds), recorded at SANAE IV base during the DMSP passage, and all the <span class="html-italic">σ</span><sub>φ</sub> values having elevation angle <span class="html-italic">α</span> = 30° (purple circles). Scintillation data were projected to 350 km altitude. Each map covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 5
<p>Polar-view maps in AACGM latitude and MLT, with spatial resolution of 1° MLat x 4 min MLT, of the Total Electron Content (TEC) at 13:30 UT (<b>a</b>), 14:00 UT (<b>b</b>), 14:30 UT (<b>c</b>) and 15:00 UT (<b>d</b>) on 8 September 2017. Each map shows vertical TEC data collected in the 30 min following the time shown at the top of each map with the projection to 350 km of altitude of all the <span class="html-italic">σ</span><sub>φ</sub> values having elevation angle <span class="html-italic">α</span> = 30° (purple circles) recorded at SANAE IV in the same time interval as the TEC data. In each map, that covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 6
<p><span class="html-italic">H</span> and <span class="html-italic">Z</span> magnetic field components recorded at SNA magnetic station located in SANAE IV base on 8 September 2017.</p> "> Figure 7
<p>Polar-view maps in AACGM latitude and MLT of SuperDARN observations at 13:38 UT (<b>a</b>), 13:40 UT (<b>b</b>), 13:42 UT (<b>c</b>) and 13:44 UT (<b>d</b>) on 8 September 2017. Each map shows the isocontours of the ionospheric potential (red=positive, blue=negative potential) and SuperDARN measurements (black squares) recorded in the two minutes following the time shown at the top of each map. In each map the projection to 350 km of altitude of all the <span class="html-italic">σ</span><sub>φ</sub> values recorded by SNA0, with elevation angle <span class="html-italic">α</span> = 30° (purple circles), in the same time interval as for SuperDARN observations are also shown. In each map, which covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 8
<p>Polar-view maps in AACGM latitude and MLT of the austral auroral radiance as measured by SSUSI instrument in the LBHL band at 01:10 UT (<b>a</b>), 18:07 UT (<b>b</b>) and 20:46 UT (<b>c</b>) on 8 September 2017. Each map also reports the auroral oval boundaries location (red dashed contours), as retrieved from the auroral radiance data, the <span class="html-italic">σ</span><sub>φ</sub> greater than 0.25 rad (magenta diamonds), recorded at SANAE IV base during the DMSP passage, and all the <span class="html-italic">σ</span><sub>φ</sub> values having elevation angle α = 30° (purple circles). GNSS data were projected to 350 km altitude. Each map covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 9
<p>Electron density root mean square (<span class="html-italic">rms</span>) by Swarm A (dots) and Swarm B (stars) on 8 September 2017, in the Southern Hemisphere. The AACGM latitude ranges between 70° and 90° S.</p> "> Figure 10
<p>Polar-view maps in AACGM latitude and MLT coordinates displaying the different from zero values of the PCP flag estimated by Swarm A (red) and Swarm B (blue) data on 8 September 2017. In each map the projection to 350 km of altitude of all the <span class="html-italic">σ</span><sub>φ</sub> values recorded by the GNSS receiver located at Concordia, which have elevation angle <span class="html-italic">α</span> = 30° (purple circles) are also shown to highlight the receiver’s field of view. Each map reports the observations collected in the time interval displayed on the top of each map. Each map covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 11
<p>Polar-view maps in AACGM latitude and MLT, with spatial resolution of 1° MLat x 4 min MLT, of the Total Electron Content (TEC) at 14:30 UT (<b>a</b>), 15:00 UT (<b>b</b>), 15:30 UT (<b>c</b>) and 16:00 UT (<b>d</b>) on 8 September 2017. Each map shows TEC data collected in the 30 min following the time shown at the top of each map with the projection to 350 km of altitude of all the <span class="html-italic">σ</span><sub>φ</sub> values having elevation angle <span class="html-italic">α</span> = 30° (purple circles) recorded at Concordia in the same time interval as the TEC data. In each map, that covers 00:00–24:00 MLT and |75°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> "> Figure 12
<p><span class="html-italic">H</span> and <span class="html-italic">Z</span> magnetic field components recorded at DMC magnetic station at Concordia on 8 September 2017.</p> "> Figure 13
<p>Polar-view maps in AACGM latitude and MLT of SuperDARN observations at 15:00 UT (<b>a</b>), 15:10 UT (<b>b</b>), 15:20 UT (<b>c</b>) and 15:30 UT (<b>d</b>) on 8 September 2017. Each map shows the isocontours of the ionospheric potential (red = positive, blue = negative potential) and the location of SuperDARN measurements (black squares) recorded in the two minutes following the time shown at the top of each map. In each map the projection to 350 km of altitude of all the <span class="html-italic">σ</span><sub>φ</sub> values having elevation angle <span class="html-italic">α</span> = 30° (purple circles), recorded by the GNSS receiver at Concordia in the same time interval as for SuperDARN observations are also shown. In each map, which covers 00:00–24:00 MLT and |50°|–|90°| AACGM Lat, the magnetic noon/midnight is at the top/bottom.</p> ">
Abstract
:1. Introduction
2. Data and Methods
3. The September 2017 Geomagnetic Storm: An Overview
4. Scintillation Events
5. Discussion
5.1. SANAE: Scintillation Events
5.2. SANAE: Phase Fluctuations without Amplitude Scintillations
5.3. Concordia: Amplitude and Phase Scintillations
6. Summary and Concluding Remarks
- Amplitude scintillation occurred together with phase scintillation at auroral latitudes under condition where the auroral oval expanded to the field of view of the GNSS observatory during geomagnetic storm.
- Phase scintillation occurred without concurrent amplitude scintillation under conditions when the background electron density was insufficient to produce intense irregularities with scale sizes of the first Fresnel radius.
- Moderate to intense amplitude scintillations were triggered by conspicuous increase in ionization as observed through unusually high TEC values at the auroral latitudes. This confirmed the theoretical prerequisite of sufficient background TEC for E-field variations associated with precipitation to form electron density irregularities with scale sizes of the order of the first Fresnel radius.
- The physical processes triggering amplitude scintillations at high and low latitudes are similar. However, since the ionosphere–magnetosphere–solar wind coupling acts in different ways in the two regions, the conditions necessary for the observation of amplitude scintillations at high latitudes are high levels of ionization and a strong plasma dynamics driven by fast oscillations in Bz,IMF (of the order of ten minutes) resulting in geomagnetic storms, which typically occur during high solar activity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, K.C.; Liu, C.-H. Radio wave scintillations in the ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar]
- Wernik, A.; Secan, J.; Fremouw, E. Ionospheric irregularities and scintillation. Adv. Space Res. 2003, 31, 971–981. [Google Scholar] [CrossRef]
- Kintner, P.M.; Ledvina, B.M.; De Paula, E. GPS and ionospheric scintillations. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Mushini, S.C.; Jayachandran, P.; Langley, R.; MacDougall, J.; Pokhotelov, D. Improved amplitude-and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solut. 2012, 16, 363–373. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.; Basu, S.; Sultan, P. Specification and forecasting of scintillations in communication/navigation links: Current status and future plans. J. Atmos. Sol. Terr. Phys. 2002, 64, 1745–1754. [Google Scholar] [CrossRef]
- Kintner, P.; Humphreys, T.; Hinksn, J. GNSS and Ionospheric Scintillation: How to survive the next solar maximum. InsideGNSS 2009, 1, 22–30. [Google Scholar]
- Spogli, L.; Alfonsi, L.; Cilliers, P.J.; Correia, E.; De Franceschi, G.; Mitchell, C.N.; Romano, V.; Kinrade, J.; Cabrera, M.A. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions. Ann. Geophys. 2013, 56, 0220. [Google Scholar]
- Alfonsi, L.; Spogli, L.; De Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C.N. Bipolar climatology of GPS ionospheric scintillation at solar minimum. Radio Sci. 2011, 46. [Google Scholar] [CrossRef]
- Jakowski, N.; Béniguel, Y.; De Franceschi, G.; Pajares, M.H.; Jacobsen, K.S.; Stanislawska, I.; Tomasik, L.; Warnant, R.; Wautelet, G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J. Space Weather Space Clim. 2012, 2, A22. [Google Scholar] [CrossRef] [Green Version]
- Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A. Climatology of GNSS ionospheric scintillation at high and mid latitudes under different solar activity conditions. Il Nuovo Cim. 2010. [Google Scholar] [CrossRef]
- Spogli, L.; Alfonsi, L.; Franceschi, G.D.; Romano, V.; Aquino, M.; Dodson, A. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann. Geophys. 2009, 27, 3429–3437. [Google Scholar] [CrossRef]
- Kinrade, J.; Mitchell, C.N.; Smith, N.D.; Ebihara, Y.; Weatherwax, A.T.; Bust, G.S. GPS phase scintillation associated with optical auroral emissions: First statistical results from the geographic South Pole. J. Geophys. Res. Space Phys. 2013, 118, 2490–2502. [Google Scholar] [CrossRef] [Green Version]
- Moen, J.; Oksavik, K.; Alfonsi, L.; Daabakk, Y.; Romano, V.; Spogli, L. Space weather challenges of the polar cap ionosphere. J. Space Weather Space Clim. 2013, 3, A02. [Google Scholar] [CrossRef]
- van der Meeren, C.; Oksavik, K.; Lorentzen, D.A.; Rietveld, M.T.; Clausen, L.B. Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. J. Geophys. Res. Space Phys. 2015, 120, 10–607. [Google Scholar] [CrossRef] [Green Version]
- Correia, E.; Spogli, L.; Alfonsi, L.; Cesaroni, C.; Gulisano, A.M.; Thomas, E.G.; Ramirez, R.F.H.; Rodel, A.A. Ionospheric F-region response to the 26 September 2011 geomagnetic storm in the Antarctica American and Australian sectors. Ann. Geophys. 2017, 35, 1113–1129. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, G.; Piersanti, M.; Alfonsi, L.; Spogli, L.; Clausen, L.B.N.; Coco, I.; Li, G.; Baiqi, N. The response of high latitude ionosphere to the 2015 St. Patrick’s day storm from in situ and ground based observations. Adv. Space Res. 2018, 62, 638–650. [Google Scholar] [CrossRef]
- D’Angelo, G.; Piersanti, M.; Alfonsi, L.; Spogli, L.; Coco, I.; Li, G.; Baiqi, N. The response of high latitude ionosphere to the 2015 June 22 storm. Ann. Geophys. 2019, 62, 454. [Google Scholar] [CrossRef] [Green Version]
- De Franceschi, G.; Alfonsi, L.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C.N.; Spencer, P.; Wernik, A.W. Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms. J. Atmos. Sol. Terr. Phys. 2008, 70, 879–888. [Google Scholar] [CrossRef]
- Kinrade, J.; Mitchell, C.; Yin, P.; Smith, N.; Jarvis, M.; Maxfield, D.; Rose, M.; Bust, G.; Weatherwax, A. Ionospheric scintillation over Antarctica during the storm of 5–6 April 2010. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.N.; Alfonsi, L.; De Franceschi, G.; Lester, M.; Romano, V.; Wernik, A.W. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Prikryl, P.; Ghoddousi-Fard, R.; Thomas, E.; Ruohoniemi, J.; Shepherd, S.; Jayachandran, P.; Danskin, D.; Spanswick, E.; Zhang, Y.; Jiao, Y. GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012–Part 1: The North American sector. Ann. Geophys. 2015, 33, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Chadwick, R. Climatology of GPS phase scintillation and HF radar backscatter for the high-latitude ionosphere under solar minimum conditions. Ann. Geophys. 2011, 29, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Zhang, Y.; Ebihara, Y.; Ghoddousi-Fard, R.; Jayachandran, P.T.; Kinrade, J.; Mitchell, C.N.; Weatherwax, A.T.; Bust, G.; Cilliers, P.J. An interhemispheric comparison of GPS phase scintillation with auroral emission observed at South Pole and from DMSP satellite. Ann. Geophys. 2013, 56. [Google Scholar] [CrossRef]
- Van Dierendonck, A.; Klobuchar, J.; Hua, Q. Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. ION GPS 1993, 93, 1333–1342. [Google Scholar]
- Fremouw, E.; Leadabrand, R.; Livingston, R.; Cousins, M.; Rino, C.; Fair, B.; Long, R. Early results from the DNA Wideband satellite experiment—Complex-signal scintillation. Radio Sci. 1978, 13, 167–187. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Mushini, S.C.; Richardson, I.G. High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: A superposed epoch analysis. Earth Planets Space 2014, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, H.; Spogli, L.; Alfonsi, L.; Cesaroni, C.; Cicone, A.; Linty, N.; Romano, V.; Cafaro, M. Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solut. 2020, 24, 1–13. [Google Scholar] [CrossRef]
- De Franceschi, G.; Spogli, L.; Alfonsi, L.; Romano, V.; Cesaroni, C.; Hunstad, I. The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spogli, L.; Ghobadi, H.; Cicone, A.; Alfonsi, L.; Cesaroni, C.; Linty, N.; Romano, V.; Cafaro, M. Adaptive Phase Detrending for GNSS Scintillation Detection: A Case Study Over Antarctica. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Doherty, P.H.; Delay, S.H.; Valladares, C.E.; Klobuchar, J.A. Ionospheric scintillation effects in the equatorial and auroral regions. In Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 662–671. [Google Scholar]
- Jin, Y.; Moen, J.I.; Miloch, W.J. On the collocation of the cusp aurora and the GPS phase scintillation: A statistical study. J. Geophys. Res. Space Phys. 2015, 120, 9176–9191. [Google Scholar] [CrossRef]
- MacDougall, J.; Jayachandran, P. Polar cap convection relationships with solar wind. Radio Sci. 2001, 36, 1869–1880. [Google Scholar] [CrossRef]
- Forte, B.; Radicella, S.M. Problems in data treatment for ionospheric scintillation measurements. Radio Sci. 2002, 37, 8-1–8-5. [Google Scholar] [CrossRef] [Green Version]
- Cesaroni, C.; De Franceschi, G.; Marcocci, C.; Pica, E.; Romano, V.; Spogli, L. Electronic Space Weather Upper Atmosphere Database (eSWua)—GNSS Scintillation Data, Version 1.0 (Version 1.0); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2020. [Google Scholar] [CrossRef]
- Baker, K.; Wing, S. A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res. Space Phys. 1989, 94, 9139–9143. [Google Scholar] [CrossRef]
- Alfonsi, L.; Cilliers, P.; Romano, V.; Hunstad, I.; Correia, E.; Linty, N.; Dovis, F.; Terzo, O.; Ruiu, P.; Ward, J. First observations of GNSS ionospheric scintillations from DemoGRAPE project. Space Weather 2016, 14, 704–709. [Google Scholar] [CrossRef]
- Bougard, B.; Sleewaegen, J.; Spogli, L.; Veettil, S.V.; Monico, J. CIGALA: Challenging the solar maximum in Brazil with PolaRxS. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 2572–2579. [Google Scholar]
- D’Angelo, G.; Spogli, L.; Cesaroni, C.; Sgrigna, V.; Alfonsi, L.; Aquino, M. GNSS data filtering optimization for ionospheric observation. Adv. Space Res. 2015, 56, 2552–2562. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; Mitchell, C.N.; Watson, R.J.; Meggs, R.W.; Kintner, P.M.; Kauristie, K.; Honary, F. GPS scintillation in the high arctic associated with an auroral arc. Space Weather 2008, 6. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Cesaroni, C.; Spogli, L.; Alfonsi, L.; De Franceschi, G.; Ciraolo, L.; Monico, J.F.G.; Scotto, C.; Romano, V.; Aquino, M.; Bougard, B. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J. Space Weather Space Clim. 2015, 5, A36. [Google Scholar] [CrossRef] [Green Version]
- Wernik, A.W.; Alfonsi, L.; Materassi, M. Ionospheric irregularities, scintillation and its effect on systems. Acta Geophys. Pol. 2004, 52, 237–249. [Google Scholar]
- Zou, Y.; Wang, D. A study of GPS ionospheric scintillations observed at Guilin. J. Atmos. Sol. Terr. Phys. 2009, 71, 1948–1958. [Google Scholar] [CrossRef]
- Paxton, L.J.; Meng, C.-I.; Fountain, G.H.; Ogorzalek, B.S.; Darlington, E.H.; Gary, S.A.; Goldsten, J.O.; Kusnierkiewicz, D.Y.; Lee, S.C.; Linstrom, L.A. SSUSI: Horizon-to-horizon and limb-viewing spectrographic imager for remote sensing of environmental parameters. Ultrav. Technol. IV 1993, 161–176. [Google Scholar] [CrossRef]
- Paxton, L.J.; Schaefer, R.K.; Zhang, Y.; Kil, H. Far ultraviolet instrument technology. J. Geophys. Res. Space Phys. 2017, 122, 2706–2733. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Oksavik, K. GPS scintillations and losses of signal lock at high latitudes during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2018, 123, 7943–7957. [Google Scholar] [CrossRef]
- Greenwald, R.; Baker, K.; Dudeney, J.; Pinnock, M.; Jones, T.; Thomas, E.; Villain, J.-P.; Cerisier, J.-C.; Senior, C.; Hanuise, C. Darn/superdarn. Space Sci. Rev. 1995, 71, 761–796. [Google Scholar] [CrossRef]
- Knudsen, D.; Burchill, J.; Buchert, S.; Eriksson, A.; Gill, R.; Wahlund, J.E.; Åhlén, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Spicher, A.; Clausen, L.B.N.; Miloch, W.J.; Lofstad, V.; Jin, Y.; Moen, J.I. Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J. Geophys. Res. Space Phys. 2017, 122, 3837–3851. [Google Scholar] [CrossRef]
- King, J.; Papitashvili, N. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Davis, T.N.; Sugiura, M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, 71, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Starodubtsev, S.; Baishev, D.; Grigoryev, V.; Karimov, R.; Kozlov, V.; Korsakov, A.; Makarov, G.; Moiseev, A. Analyzing solar, cosmic, and geophysical events in September 2017, using SHIСRA SB RAS complex observations. Sol. Terr. Phys. 2019, 5, 14–27. [Google Scholar]
- Tassev, Y.; Velinov, P.I.; Tomova, D.; Mateev, L. Analysis of extreme solar activity in early september 2017: G4–severe geomagnetic storm (07–08.09) and GLE72 (10.09) in solar minimum. Comptes Rendus De L’académie Bulg. Des Sci. 2017, 70, 1437–1444. [Google Scholar]
- Piersanti, M.; Di Matteo, S.; Carter, B.; Currie, J.; D’Angelo, G. Geoelectric field evaluation during the September 2017 Geomagnetic Storm: MA. I. GIC. model. Space Weather 2019, 17, 1241–1256. [Google Scholar] [CrossRef] [Green Version]
- Akasofu, S.-I. Auroral substorms: Search for processes causing the expansion phase in terms of the electric current approach. Space Sci. Rev. 2017, 212, 341–381. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, I.; Zakharenkova, I. Dependence of the high-latitude plasma irregularities on the auroral activity indices: A case study of 17 March 2015 geomagnetic storm. Earth Planets Space 2015, 67, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.; Mannucci, A.; Sparks, L.; Pi, X.; Lindqwister, U.; Wilson, B.; Iijima, B.; Reyes, M. Ionospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms. J. Geophys. Res. Space Phys. 1998, 103, 26409–26420. [Google Scholar] [CrossRef]
- Jin, Y.; Moen, J.I.; Oksavik, K.; Spicher, A.; Clausen, L.B.; Miloch, W.J. GPS scintillations associated with cusp dynamics and polar cap patches. J. Space Weather Space Clim. 2017, 7, A23. [Google Scholar] [CrossRef]
- Oksavik, K.; van der Meeren, C.; Lorentzen, D.A.; Baddeley, L.; Moen, J. Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. J. Geophys. Res. Space Phys. 2015, 120, 9161–9175. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.; Quinn, J.; Doherty, P. A comparison of TEC fluctuations and scintillations at Ascension Island. J. Atmos. Sol. Terr. Phys. 1999, 61, 1219–1226. [Google Scholar] [CrossRef]
- Fæhn Follestad, A.; Herlingshaw, K.; Ghadjari, H.; Knudsen, D.J.; McWilliams, K.A.; Moen, J.I.; Spicher, A.; Wu, J.; Oksavik, K. Dayside Field-Aligned Current Impacts on Ionospheric Irregularities. Geophys. Res. Lett. 2020, 47, e2019GL086722. [Google Scholar] [CrossRef]
- Kintner, P.M.; Seyler, C.E. The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci. Rev. 1985, 41, 91–129. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; MacKenzie, E.; Coley, W.; Sharber, J.; Hoegy, W. Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes. J. Geophys. Res. Space Phys. 1990, 95, 7799–7818. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, L.; Xiong, Y.; Deng, X.; Wang, J. Energetic particle precipitation and the influence on the sub-ionosphere in the SED plume during a super geomagnetic storm. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Yuan, Z.G.; Deng, X.H.; Zhang, S.R.; Wan, W.X.; Reinisch, B.W. F region behavior in the SED plume during a geomagnetic superstorm: A case study. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Foster, J.C. Ionospheric signatures of magnetospheric convection. J. Geophys. Res. Space Phys. 1984, 89, 855–865. [Google Scholar] [CrossRef]
- Foster, J.C. Plasma Transport through the Dayside Cleft: A Source of Ionization Patches in the Polar Cap. In Electromagnetic Coupling in the Polar Clefts and Caps; NATO ASI Series (C: Mathematical and Physical Sciences); Sandholt, P.E., Egeland, A., Eds.; Springer: Dordrecht, The Netherlands, 1989; Volume 278. [Google Scholar] [CrossRef]
- Sato, T. Morphology of ionospheric F2 disturbances in the polar regions, A linkage between polar patches and plasmaspheric drainage plumes. Rep. Ionos. Res. Space Res. Jpn 1959, 131, 91. [Google Scholar]
- Liu, J.; Wang, W.; Burns, A.; Solomon, S.C.; Zhang, S.; Zhang, Y.; Huang, C. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization. J. Geophys. Res. Space Phys. 2016, 121, 8121–8133. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Burns, A.; Liu, L.; McInerney, J. A TIEGCM numerical study of the source and evolution of ionospheric F-region tongues of ionization: Universal time and interplanetary magnetic field dependence. J. Atmos. Sol. Terr. Phys. 2017, 156, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Consolini, G.; De Michelis, P.; Alberti, T.; Giannattasio, F.; Coco, I.; Tozzi, R.; Chang, T. On the Multifractal Features of Low-Frequency Magnetic Field Fluctuations in the Field-Aligned Current Ionospheric Polar Regions: Swarm Observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027429. [Google Scholar] [CrossRef]
- Meziane, K.; Kashcheyev, A.; Patra, S.; Jayachandran, P.; Hamza, A. Solar Cycle Variations of GPS Amplitude Scintillation for the Polar Region. Space Weather 2020, 18, e2019SW002434. [Google Scholar] [CrossRef]
- Ruohoniemi, J.; Baker, K. Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J. Geophys. Res. Space Phys. 1998, 103, 20797–20811. [Google Scholar] [CrossRef]
- Cousins, E.; Shepherd, S. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Villain, J.; Hanuise, C.; Beghin, C. ARCAD 3-SAFARI coordinated study of auroral and polar F-region ionospheric irregularities. Ann. Geophys. 0755, 4, 61–68. [Google Scholar]
- Kelley, M.C.; Vickrey, J.F.; Carlson, C.; Torbert, R. On the origin and spatial extent of high-latitude F region irregularities. J. Geophys. Res. Space Phys. 1982, 87, 4469–4475. [Google Scholar] [CrossRef]
- Pfaff, R.; Kelley, M.; Fejer, B.G.; Kudeki, E.; Carlson, C.; Pedersen, A.; Hausler, B. Electric field and plasma density measurements in the auroral electrojet. J. Geophys. Res. Space Phys. 1984, 89, 236–244. [Google Scholar] [CrossRef]
- Sahr, J.; Fejer, B.G. Auroral electrojet irregularity theory and experiment: A critical review of present understanding and future directions. J. Geophys. Res. 1996, 101, 893. [Google Scholar] [CrossRef]
- De Michelis, P.; Consolini, G.; Pignalberi, A.; Tozzi, R.; Coco, I.; Giannattasio, F.; Pezzopane, M.; Balasis, G. Looking for a proxy of the ionospheric turbulence with Swarm data. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Mrak, S.; Semeter, J.; Hirsch, M.; Starr, G.; Hampton, D.; Varney, R.H.; Reimer, A.S.; Swoboda, J.; Erickson, P.J.; Lind, F. Field-aligned GPS scintillation: Multisensor data fusion. J. Geophys. Res. Space Phys. 2018, 123, 974–992. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Moen, J.I.; Miloch, W.J. GPS scintillation effects associated with polar cap patches and substorm auroral activity: Direct comparison. J. Space Weather Space Clim. 2014, 4, A23. [Google Scholar] [CrossRef]
- Jin, Y.; Moen, J.I.; Miloch, W.J.; Clausen, L.B.; Oksavik, K. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. J. Geophys. Res. Space Phys. 2016, 121, 4679–4697. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, A.V.; Buck, J.R.; Schafer, R.W. Discrete-Time Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 2. [Google Scholar]
- Spogli, L.; Piersanti, M.; Cesaroni, C.; Materassi, M.; Cicone, A.; Alfonsi, L.; Romano, V.; Ezquer, R.G. Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. J. Space Weather Space Clim. 2019, 9, A35. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Moraes, A.; Costa, E.; Abdu, M.A.; Rodrigues, F.S.; de Paula, E.R.; Oliveira, K.; Perrella, W.J. The variability of low-latitude ionospheric amplitude and phase scintillation detected by a triple-frequency GPS receiver. Radio Sci. 2017, 52, 439–460. [Google Scholar] [CrossRef]
- Weber, E.; Klobuchar, J.; Buchau, J.; Carlson, H., Jr.; Livingston, R.; de La Beaujardiere, O.; McCready, M.; Moore, J.; Bishop, G. Polar cap F layer patches: Structure and dynamics. J. Geophys. Res. Space Phys. 1986, 91, 12121–12129. [Google Scholar] [CrossRef]
- Weber, E.; Tsunoda, R.; Buchau, J.; Sheehan, R.; Strickland, D.; Whiting, W.; Moore, J. Coordinated measurements of auroral zone plasma enhancements. J. Geophys. Res. Space Phys. 1985, 90, 6497–6513. [Google Scholar] [CrossRef]
- Weber, E.J.; Buchau, J.; Moore, J.; Sharber, J.; Livingston, R.; Winningham, J.D.; Reinisch, B. F layer ionization patches in the polar cap. J. Geophys. Res. Space Phys. 1984, 89, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Ruohoniemi, J.; Greenwald, R. Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Stone, W.R. Critical review of ionospheric patches and blobs. In Review of Radio Science 1993–1996; Stone, W.R. URSI: Ghent, Belgium, 1996. [Google Scholar]
- Crowley, G.; Ridley, A.; Deist, D.; Wing, S.; Knipp, D.; Emery, B.; Foster, J.; Heelis, R.; Hairston, M.; Reinisch, B. Transformation of high-latitude ionospheric F region patches into blobs during the March 21, 1990, storm. J. Geophys. Res. Space Phys. 2000, 105, 5215–5230. [Google Scholar] [CrossRef] [Green Version]
- Rodger, A.; Graham, A. Diurnal and seasonal occurrence of polar patches. Ann. Geophys. 1996, 14, 533–537. [Google Scholar] [CrossRef]
- De Michelis, P.; Consolini, G.; Tozzi, R.; Marcucci, M.F. Scaling Features of High-Latitude Geomagnetic Field Fluctuations at Swarm Altitude: Impact of IMF Orientation. J. Geophys. Res. Space Phys. 2017, 122, 10–548. [Google Scholar] [CrossRef]
- De Michelis, P.; Consolini, G.; Tozzi, R.; Marcucci, M.F. Observations of high-latitude geomagnetic field fluctuations during St. Patrick’s Day storm: Swarm and SuperDARN measurements. Earth Planets Space 2016, 68, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Carrano, C.S.; Groves, K.M.; Caton, R.G.; Rino, C.L.; Straus, P.R. Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Sci. 2011, 46, 1–14. [Google Scholar] [CrossRef]
- van der Meeren, C.; Oksavik, K.; Lorentzen, D.; Moen, J.I.; Romano, V. GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J. Geophys. Res. Space Phys. 2014, 119, 8624–8636. [Google Scholar] [CrossRef]
- De Michelis, P.; Pignalberi, A.; Consolini, G.; Coco, I.; Tozzi, R.; Pezzopane, M.; Giannattasio, F.; Balasis, G. On the 2015 St. Patrick’s Storm Turbulent State of the Ionosphere: Hints from the Swarm Mission. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027934. [Google Scholar] [CrossRef]
- Consolini, G.; De Michelis, P.; Alberti, T.; Coco, I.; Giannattasio, F.; Tozzi, R.; Carbone, V. Intermittency and Passive Scalar Nature of Electron Density Fluctuations in the High-Latitude Ionosphere at Swarm Altitude. Geophys. Res. Lett. 2020, 47, e2020GL089628. [Google Scholar] [CrossRef]
- Consolini, G.; Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F.; Pezzopane, M.; Marcucci, M.F.; Balasis, G. High-latitude polar pattern of ionospheric electron density: Scaling features and IMF dependence. J. Atmos. Sol. Terr. Phys. 2021, 217, 105531. [Google Scholar] [CrossRef]
- Spicher, A.; Miloch, W.; Clausen, L.; Moen, J. Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket. J. Geophys. Res. Space Phys. 2015, 120, 10959–10978. [Google Scholar] [CrossRef] [Green Version]
- Heppner, J.; Liebrecht, M.; Maynard, N.; Pfaff, R. High-latitude distributions of plasma waves and spatial irregularities from DE 2 alternating current electric field observations. J. Geophys. Res. Space Phys. 1993, 98, 1629–1652. [Google Scholar] [CrossRef]
Location | Station ID | Owner | Latitude | Longitude | AACGM Lat | AACGM Lon |
---|---|---|---|---|---|---|
Concordia | DMC0 | INGV | 75.10° S | 123.35° E | 88.98° S | 57.64° E |
SANAE | SNA0 | INGV | 71.67° S | 2.84° W | 61.83° S | 44.91° E |
Satellite Observations | ||||
---|---|---|---|---|
Satellite | Height of Flight | Instrument Type | Measurements | Sampling Time |
Defense Meteorological Satellite Program (DMSP) satellites | ~830 km | Special Sensor Ultraviolet Spectrographic Imager (SSUSI) | emission from N2 LBHL band (165–180 nm) | 15 s for each scan |
Swarm A and B satellites | ~445 km and ~510 km respectively | Langmuir probes | Electron density | 0.5 s |
Ground-based Observations | ||||
---|---|---|---|---|
Instrument Type | Location | Station ID | Measurements | Sampling Time |
Fluxgate magnetometers | Concordia SANAE IV | DMC SNA | H, Z | 1 min 1 s |
Super Dual Auroral Radar Network (SuperDARN) | High latitudes Mid latitudes Polar Cap | Convection velocity and spectral width | 2 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Angelo, G.; Piersanti, M.; Pignalberi, A.; Coco, I.; De Michelis, P.; Tozzi, R.; Pezzopane, M.; Alfonsi, L.; Cilliers, P.; Ubertini, P. Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sens. 2021, 13, 2493. https://doi.org/10.3390/rs13132493
D’Angelo G, Piersanti M, Pignalberi A, Coco I, De Michelis P, Tozzi R, Pezzopane M, Alfonsi L, Cilliers P, Ubertini P. Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sensing. 2021; 13(13):2493. https://doi.org/10.3390/rs13132493
Chicago/Turabian StyleD’Angelo, Giulia, Mirko Piersanti, Alessio Pignalberi, Igino Coco, Paola De Michelis, Roberta Tozzi, Michael Pezzopane, Lucilla Alfonsi, Pierre Cilliers, and Pietro Ubertini. 2021. "Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study" Remote Sensing 13, no. 13: 2493. https://doi.org/10.3390/rs13132493
APA StyleD’Angelo, G., Piersanti, M., Pignalberi, A., Coco, I., De Michelis, P., Tozzi, R., Pezzopane, M., Alfonsi, L., Cilliers, P., & Ubertini, P. (2021). Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sensing, 13(13), 2493. https://doi.org/10.3390/rs13132493