Comparison and Assessment of Three ITRS Realizations
"> Figure 1
<p>Distribution of the stations involved in the Helmert transformation.</p> "> Figure 2
<p>Number variation of the selected stations involved in the comparisons.</p> "> Figure 3
<p>ITRF2014 and IGS station coordinate time series in the NEU coordinate system of ALBH (<b>left</b>) and MIZU (<b>right</b>). The average values of IGS solutions are taken from individual components.</p> "> Figure 4
<p>Time series of the Helmert transformation parameters estimated between ITRF2014 and IGS. Red vertical lines mark the discontinuities that occur in the IGS time series.</p> "> Figure 5
<p>Time series of the translation, rotation, and scale offsets estimated between ITRF2014 and the corrected IGS solutions and their amplitude spectra from top to bottom (blue). The linear trend curves before and after 14 February 2015 of the Helmert parameters are also plotted (red lines). The vertical gray lines indicate the first 10 harmonics of the GPS draconitic year, and the two vertical red lines indicate the annual and semiannual signals.</p> "> Figure 6
<p>The station position time series of ASPA: <b>left</b> for ITRF2014, <b>right</b> for DTRF2014, and the IGS time series for both left and right as a comparison. The average values of IGS solutions are taken from individual components.</p> "> Figure 7
<p>Time series of the translation, rotation, and scale offsets estimated between DTRF2014 and IGS and their amplitude spectra from top to bottom (blue). The linear trend curve before and after 2015.0 of the Helmert parameters are also plotted (red lines). The vertical gray lines indicate the first 10 harmonics of the GPS draconitic year, and the two vertical red lines indicate the annual and semiannual signals.</p> "> Figure 8
<p>The IGS and JTRF2014 station position time series of the station ALGO. The average values of the IGS solutions are taken from individual components.</p> "> Figure 9
<p>Time series of the translation, rotation, and scale offsets estimated between JTRF2014 and IGS and their amplitude spectra from top to bottom.</p> "> Figure 10
<p>Time series of the translation and rotation parameters estimated between JTRF2014 and IGS after subtracting the annual and semiannual signals.</p> ">
Abstract
:1. Introduction
2. Selected GNSS Station Networks
3. Comparison between ITRF2014 and IGS
4. Comparison between DTRF2014 and IGS
5. Comparison between JTRF2014 and IGS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Analysis Center |
CM | Center of Mass |
DORIS | Doppler Orbitography and Radiopositioning integrated by Satellite |
GNSS | Global Navigation Satellite System |
IGS | International GNSS Service |
ITRS | International Terrestrial Reference System |
NNR | no-net-rotation |
NNT | no-net-translation |
NTL | non-tidal loading |
PCO | antenna phase center offset |
PSD | post-seismic deformation |
SLR | Satellite Lasor Ranging |
TRF | Terrestrial Reference Frame |
VLBI | Very Long Baseline Interferometry |
References
- Argus, D.F.; Heflin, M.B. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys. Res. Lett. 1995, 22, 1973–1976. [Google Scholar] [CrossRef]
- Altamimi, Z.; Metivier, L.; Collilieux, X. ITRF2008 plate motion model. J. Geophys. Res. 2012, 117, B07402. [Google Scholar] [CrossRef]
- Argus, D.F.; Peltier, W.R.; Drummond, R.; Moore, A.W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J. Int. 2014, 198, 537–563. [Google Scholar] [CrossRef]
- Argus, D.F. Postglacial rebound from VLBI geodesy: On establishing vertical reference. Geophys. Res. Lett. 1996, 23, 973–976. [Google Scholar] [CrossRef]
- Argus, D.F.; Peltier, W.R.; Watkins, M.M. Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy. J. Geophys. Res. 1999, 104, 29077–29093. [Google Scholar] [CrossRef]
- Borsa, A.A.; Agnew, D.C.; Cayan, D.R. Ongoing drought-induced uplift in the western United States. Science 2014, 345, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Argus, D.F.; Landerer, F.W. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J. Geophys. Res. Solid Earth 2015, 120, 552–566. [Google Scholar] [CrossRef]
- Gross, R.; Beutler, G.; Plag, H.P. Integrated scientific and societal user requirements and functional specifications for the GGOS. In Global Geodetic Observing; Plag, H.P., Pearlman, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Blewitt, G.; Altamimi, Z.; Davis, J.; Gross, R.; Kuo, C.Y.; Lemoine, F.G.; Zerbini, S. Geodetic Observations and Global Reference Frame Contributions to Understanding Sea-Level Rise and Variability. In Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S., Eds.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Collilieux, X.; Woppelmann, G. Global sea-level rise and its relation to the Terrestrial Reference Frame. J. Geodesy 2011, 85, 9–22. [Google Scholar] [CrossRef]
- Woppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Collilieux, X.; Boucher, C. Accuracy Assessment of the ITRF Datum Definition. In VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy; Xu, P., Liu, J., Dermanis, A., Eds.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Metivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth. 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- PANGAEA. Available online: https://doi.org/10.1594/PANGAEA.864046 (accessed on 24 August 2019).
- Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T.M.; Collilieux, X.; Gross, R.S.; Parker, J.W. KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J. Geophys. Res. Solid Earth. 2015, 120, 3775–3802. [Google Scholar] [CrossRef]
- Angermann, D.; Bloßfeld, M.; Seitz, M.; Rudenko, S. Comparison of latest ITRS realizations: ITRF2014, DTRF2014 and JTRF2014. In IERS Technical Note No. 40; Altamimi, Z., Dick, W.R., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2020; pp. 79–93. ISBN 978-3-86482-137-0. [Google Scholar]
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Métivier, L.; Chanard, K. Review of Reference Frame Representations for a Deformable Earth. In IX Hotine-Marussi Symposium on Mathematical Geodesy; Altamimi, Z., Dick, W.R., Eds.; International Association of Geodesy Symposia; Springer: Cham, Switzerland, 2019; pp. 51–56. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geodesy 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Bloßfeld, M.; Angermann, D.; Seitz, M. DGFI-TUM Analysis and Scale Investigations of the Latest Terrestrial Reference Frame Realizations. In International Symposium on Advancing Geodesy in a Changing World; Freymueller, J., Sánchez, L., Eds.; International Association of Geodesy Symposia; Springer: Cham, Switzerland, 2018; Volume 149. [Google Scholar] [CrossRef]
- Dong, D.; Yunck, T.; Heflin, M. Origin of the International Terrestrial Reference Frame. J. Geophys. Res. 2003, 108, 2200. [Google Scholar] [CrossRef]
- Meindl, M.; Beutler, G.; Thaller, D.; Dach, R.; Jäggi, A. Geocenter coordinates estimated fromGNSS data as viewed by perturbation theory. Adv. Space Res. 2013, 51, 1047–1064. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Springer, T. A collinearity diagnosis of the GNSS geocenter determination. J. Geodesy 2014, 88, 65–85. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. International Earth Rotation and Reference System Services Conventions (2010). In IERS Technical Note 36; Petit, G., Luzum, B., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010; p. 179. ISBN 3-89888-989-6. [Google Scholar]
- Ray, J.R.; Rebischung, P.; Schmid, R. Dependence of IGS products on the ITRF datum. In Reference Frames for Applications in Geosciences; Altamimi, Z., Collilieux, X., Eds.; International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2016; Volume 138. [Google Scholar] [CrossRef]
- Abbondanza, C.; Chin, T.M.; Gross, R.S.; Heflin, M.B.; Parker, J.W.; Soja, B.S.; van Dam, T.; Wu, X. JTRF2014: Analysis, Results and Comparisons to ITRF2014 and DTRF2014. In IERS Technical Note No. 40; Altamimi, Z., Dick, W.R., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2020; pp. 17–69. ISBN 978-3-86482-137-0. [Google Scholar]
- Dach, R.; Sušnik, A.; Maier, A.; Villiger, A.; Arnold, D.; Jäggi, A. Evaluation of ITRF2014 Solutions. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; Available online: http://www.bernese.unibe.ch/publist/2016/post/poster_XTRF2014_final.pdf (accessed on 28 May 2021).
- Dach, R.; Grahsl, A.; Sušnik, A.; Villiger, A.; Arnold, D.; Jäggi, A. Evaluation of ITRF2014 Solutions. In Proceedings of the General Assembly, Vienna, Austria, 24–28 April 2017; Available online: http://www.bernese.unibe.ch/publist/2017/post/xTRF2014_final.pdf (accessed on 28 May 2021).
- Fritsche, M.; Sośnica, K.; Rodríguez-Solano, C.J.; Steigenberger, P.; Wang, K.; Dietrich, R.; Rothacher, M. Homogeneous reprocessing of GPS, GLONASS and SLR observations. J. Geod. 2014, 880, 625–642. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Rebischung, P.; Schmid, R. IGS14/igs14.atx: A new Framework for the IGS Products. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geodesy 2011, 85, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Collilieux, X.; Altamimi, Z.; Coulot, D.; Van, D.T.; Ray, J. Impact of loading effects on determination of the International Terrestrial Reference Frame. Adv. Space Res. 2010, 45, 144–154. [Google Scholar] [CrossRef]
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.P.; Reigber, C. Impact of GPS satellite antenna offsets on scale changes in global network solution. Geophys. Res. Lett. 2005, 32, L06310. [Google Scholar] [CrossRef]
- Moreaux, G.; Capdeville, H.; Abbondanza, C.; Bloßfeld, M.; Lemoine, J.M.; Ferrage, P. A comparison of the DTRF2014, ITRF2014, and JTRF2014 solutions using DORIS. In IERS Technical Note No. 40; Altamimi, Z., Dick, W.R., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2020; pp. 95–133. ISBN 978-3-86482-137-0. [Google Scholar]
- Blewitt, G.; Lavalée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. 2005, 107, 2145. [Google Scholar] [CrossRef] [Green Version]
- Sosnica, K. Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging. Ph.D. Thesis, University of Bern, Bern, Switzerland, April 2014. Available online: http://www.bernese.unibe.ch/publist/2014/book/diss_ks_front.pdf (accessed on 6 March 2021).
- Zajdel, R.; Sośnica, K.; Drożdżewski, M.; Bury, G.; Strugarek, D. Mpact of network constraining on the terrestrial reference frame realization based on SLR observations to LAGEOS. J. Geod. 2019, 93, 2293–2313. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J. Geophys. Res. 2007, 112, B09401. [Google Scholar] [CrossRef] [Green Version]
Period | Tx | Ty | Tz | Rx | Ry | Rz | Scale |
---|---|---|---|---|---|---|---|
mm/yr | μas/yr | ppb/yr | |||||
Determination | 0.02 | 0.02 | 0.01 | −1.2 | 2.1 | −0.5 | 0.001 |
±0.46 | ±0.47 | ±0.46 | ±11.6 | ±13.3 | ±13.2 | ±0.120 | |
Prediction | 0.05 | −0.169 | 0.23 | 11.9 | 5.5 | 8.4 | −0.038 |
±0.65 | ±0.57 | ±0.67 | ±14.3 | ±14.4 | ±15.0 | ±0.113 |
Period | Tx | Ty | Tz | Rx | Ry | Rz | Scale |
---|---|---|---|---|---|---|---|
mm/yr | μas/yr | ppb/yr | |||||
Determination | 0.07 | 0.11 | −0.15 | −3.6 | −1.9 | 2.9 | 0.007 |
±0.47 | ±0.59 | ±0.47 | ±14.0 | ±14.0 | ±16.4 | ±0.135 | |
Prediction | −0.17 | −0.18 | −0.12 | 15.9 | −2.3 | 13.2 | −0.005 |
±0.68 | ±0.65 | ±0.73 | ±18.4 | ±14.8 | ±16.8 | ±0.121 |
Tx | Ty | Tz | Rx | Ry | Rz | Scale | |
---|---|---|---|---|---|---|---|
offset | −2.1 | −0.6 | −0.4 | −49.3 | −5.2 | 2.4 | 0.35 |
drift | −0.10 | 0.03 | 0.33 | −5.72 | 4.25 | 2.87 | 0.05 |
STD | 0.99 | 0.94 | 1.36 | 17.2 | 18.2 | 18.5 | 0.25 |
Tx | Ty | Tz | Rx | Ry | Rz | |
---|---|---|---|---|---|---|
annual | 1.5 | 3.0 | 2.4 | 18.6 | 9.7 | 7.5 |
semiannual | 0.6 | 0.3 | 1.4 | 7.1 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Chen, J.; Liu, P.; Tan, W.; Dong, D.; Qu, W. Comparison and Assessment of Three ITRS Realizations. Remote Sens. 2021, 13, 2304. https://doi.org/10.3390/rs13122304
Liu J, Chen J, Liu P, Tan W, Dong D, Qu W. Comparison and Assessment of Three ITRS Realizations. Remote Sensing. 2021; 13(12):2304. https://doi.org/10.3390/rs13122304
Chicago/Turabian StyleLiu, Jiao, Junping Chen, Peizhao Liu, Weijie Tan, Danan Dong, and Weijing Qu. 2021. "Comparison and Assessment of Three ITRS Realizations" Remote Sensing 13, no. 12: 2304. https://doi.org/10.3390/rs13122304
APA StyleLiu, J., Chen, J., Liu, P., Tan, W., Dong, D., & Qu, W. (2021). Comparison and Assessment of Three ITRS Realizations. Remote Sensing, 13(12), 2304. https://doi.org/10.3390/rs13122304