Improved Transformer Net for Hyperspectral Image Classification
"> Figure 1
<p>Spectral attention mechanism. The module uses operations such as maximum pooling, average pooling, and shared weights to re-output feature maps with different weights.</p> "> Figure 2
<p>Multi-Head Self-Attention structure: After mapping, linear change, matrix operation, and other operations, the output sequence obtained has the same length as the input sequence, and each output vector depends on all input vectors.</p> "> Figure 3
<p>Transformer Encoder Block. This module is composed of the norm, multi-head self-attention, and dense and other structures connected in the form of residuals.</p> "> Figure 4
<p>The proposed SAT Net architecture. After the original HSI data is processed, it is input into the spectral attention and decoder modules with multi-head self-attention to extract HSI features. Second, the encoder module uses a multi-layer residual structure for connection, thereby effectively reducing information loss, and finally through the fully connected layer, it outputs classification information.</p> "> Figure 5
<p>Salinas images: (<b>a</b>) pseudo-color image; (<b>b</b>) ground-truth labels.</p> "> Figure 6
<p>Indian Pines images: (<b>a</b>) pseudo-color image; (<b>b</b>) ground-truth labels.</p> "> Figure 7
<p>University of Pavia images: (<b>a</b>) pseudo-color image; (<b>b</b>) ground-truth labels.</p> "> Figure 8
<p>Overall classification accuracy per dataset under various encoder block sizes.</p> "> Figure 9
<p>Overall accuracy per dataset under different training set proportions.</p> "> Figure 10
<p>The overall classification accuracy of the three data sets at different learning rates.</p> "> Figure 11
<p>Overall accuracy curve of different models in SA dataset.</p> "> Figure 12
<p>Overall accuracy curve of different models in IN dataset.</p> "> Figure 13
<p>Overall accuracy curve of different models in UP dataset.</p> "> Figure 14
<p>The classification map on the SA dataset for (<b>a</b>) CNN, (<b>b</b>) SA-MCN, (<b>c</b>) 3D-CNN (<b>d</b>) SSRN, (<b>e</b>) MSRN, and (<b>f</b>) proposed SAT Net.</p> "> Figure 15
<p>The classification map on the IN dataset for (<b>a</b>) CNN, (<b>b</b>) SA-MCN, (<b>c</b>) 3D-CNN (<b>d</b>) SSRN, (<b>e</b>) MSRN, and (<b>f</b>) proposed SAT Net.</p> "> Figure 16
<p>The classification map on the UP dataset for (<b>a</b>) CNN, (<b>b</b>) SA-MCN, (<b>c</b>) 3D-CNN (<b>d</b>) SSRN, (<b>e</b>) MSRN, and (<b>f</b>) proposed SAT Net.</p> "> Figure 17
<p>(<b>a</b>) (MSRN) and (<b>b</b>) (SAT NET) are partial results of the UP dataset, (<b>c</b>) (MSRN), and (<b>d</b>) (SAT NET) are partial results of the UP dataset, (<b>e</b>) (MSRN) and (<b>f</b>) (SAT NET) are partial results of the UP dataset.</p> ">
Abstract
:1. Introduction
- Our network employs a spectral attention module and uses both the spectral attention module and the self-attention module to extract feature information avoiding feature information loss.
- The core process of our network involves an encoder block with multi-head self-attention, which successfully handles the long-distance dependence of the spectral band information of the hyperspectral image data.
- In our SAT Net model, multiple encoder blocks are directly connected using a multi-level residual structure and effectively avoid information loss caused by stacking multiple sub-modules.
- Our proposed SAT Net is interpretable, enhancing its HSI feature extraction capability and increasing its generalization ability.
- Experimental evaluation on HSI classification against five current methods highlights the effectiveness of the proposed SAT Net model.
2. Methodology
2.1. Spectral Attention Block
2.2. Multi-Head Self-Attention
2.3. Encoder Block
2.4. Overview of the Proposed Model
3. Experiments, Results, and Discussion
3.1. Data Set Description
3.1.1. Salinas (SA)
3.1.2. Indian Pines (IN)
3.1.3. University of Pavia (UP)
3.2. Experimental Setup
3.3. Image Preprocessing
3.3.1. Image Size (IS)
3.3.2. Patch Size (PS)
3.3.3. Depth Size
3.3.4. Training Sample Ratio
3.3.5. Learning Rate
3.4. Evaluation
3.4.1. Quantitative Evaluation
3.4.2. Qualitative Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghiyamat, A.; Shafri, H.Z. A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. Int. J. Remote Sens. 2010, 31, 1837–1856. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Q. Joint within-class collaborative representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2200–2208. [Google Scholar] [CrossRef]
- Manjunath, K.; Ray, S.; Vyas, D. Identification of indices for accurate estimation of anthocyanin and carotenoids in different species of flowers using hyperspectral data. Remote Sens. Lett. 2016, 7, 1004–1013. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Y.; Shang, K.; Zhang, L.; Wang, S. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 4117–4128. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. Dimensionality reduction by spatial–spectral preservation in selected bands. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5185–5197. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral–spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Luo, F.; Du, B.; Zhang, L.; Zhang, L.; Tao, D. Feature learning using spatial–spectral Hypergraph discriminant analysis for hyperspectral image. IEEE Trans. Cybern. 2019, 49, 2406–2419. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2145–2160. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification with edge-preserving filtrering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Wei, Z.; Xiao, L.; Sun, L. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2462–2471. [Google Scholar] [CrossRef]
- Chi, M.; Feng, R.; Bruzzone, L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793–1799. [Google Scholar] [CrossRef]
- Haut, J.; Paoletti, M.; Plaza, J.; Plaza, A. Cloud implementation of the K-means algorithm for hyperspectral image analysis. J. Supercomput. 2017, 73, 514–529. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVMand MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Hong, D.; Liu, J.; Baier, G.; Yokoya, N.; Demir, B. Learning convolutional sparse coding on complex domain for interferometric phase restoration. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32(2), 826–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Lu, X.; Wang, B.; Zheng, X.; Li, X. Exploring models and data for remote sensing image caption generation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2183–2195. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Xue, Y.; Liu, X.; Li, C.; Tao, D. Active transfer learning network: A unified deep joint spectral–spatial feature learning model for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1741–1754. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wan, X.; Zhao, G.; Cui, B.; Liu, W.; Qi, B. Spectralspatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest. Eur. J. Remote Sens. 2017, 50, 47–63. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, Z.; Du, P. Semisupervised stacked autoencoder with cotraining for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3813–3826. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Zhou, F.; Hang, R.; Liu, Q.; Yuan, X. Hyperspectral image classification using spectral-spatial LSTMs. Neurocomputing 2019, 328, 39–47. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Mei, S.; JI, J.; Bi, Q.; Hou, J.; Du, Q.; Li, W. Integrating spectral and spatial information into deep convolutional neural networks for hyperspectral classification. IEEE Int. Geosci. Remote Sens. Symp. 2016, 5067–5070. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, L.; Peng, J.; Sun, W. Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018. to be published. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Seydgar, M.; Alizadeh Naeini, A.; Zhang, M.; Li, W. 3-D convolution-recurrent networks for spectral-spatial classification of hyperspectral images. Remote Sens. 2019, 11, 833. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Tang, P.; Zhang, Z. A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid Pooling for Hyperspectral Image Classification. Remote Sens. 2020, 12, 1964. [Google Scholar] [CrossRef]
- Gao, F.; Huang, T.; Sun, J.; Wang, J.; Hussain, A.; Yang, E. A New Algorithm of SAR Image Target Recognition Based on Improved Deep Convolutional Neural Network. Cogn. Comput. 2019, 11, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual Spectral–Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 449–462. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Wu, P.; Cui, Z.; Gan, Z.; Liu, F. Residual Group Channel and Space Attention Network for Hyperspectral Image Classification. Remote Sens. 2020, 12, 2035. [Google Scholar] [CrossRef]
- Li, L.; Yin, J.; Jia, X.; Li, S.; Han, B. Joint Spatial-Spectral Attention Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X.X. Learning to pay attention on spectral domain: A spectral attention module-based convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 110–122. [Google Scholar] [CrossRef]
- Qing, Y.; Liu, W. Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism. Remote Sens. 2021, 13, 335. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762v5. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pretraining of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog. 2019, 1, 9. [Google Scholar]
- Agrawal, A.; Jha, A.K.; Jaiswal, A.; Kumar, V. Irony Detection Using Transformers. In Proceedings of the International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 1–2 August 2020; pp. 165–168. [Google Scholar] [CrossRef]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jegou, H. Training data-efficient image transformers & distillation through attention. arXiv 2020, arXiv:2012.12877. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. arXiv 2020, arXiv:2005.12872. [Google Scholar]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning texture transformer network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5791–5800. [Google Scholar]
- Girdhar, R.; Carreira, J.; Doersch, C.; Zisserman, A. Video action transformer network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 244–253. [Google Scholar]
- Wang, F.; Tax, D.M. Survey on the attention based rnn model and its applications in computer vision. arXiv 2016, arXiv:1601.06823. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision–ECCV 2018. ECCV 2018; Lecture Notes in Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Berlin, Germany, 2018; Volume 11211, pp. 3–19. [Google Scholar] [CrossRef] [Green Version]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2016, arXiv:1606.08415V3. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980v8. [Google Scholar]
- Zhang, S.; Sun, F.; Wang, N.; Zhang, C.; Yu, Q.; Zhang, M.; Zhong, H. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. J. Digit. Imaging 2019, 32, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 12. [Google Scholar] [CrossRef] [Green Version]
Data | Sensor | Wavelength (nm) | Spatial Size (Pixel)s | Spectral Size | No of Classes | Labeled Samples | Spatial Resolution (m) |
---|---|---|---|---|---|---|---|
SA | AVIRIS | 400–2500 | 512 × 217 | 224 | 16 | 54,129 | 3.7 |
IN | AVIRIS | 400–2500 | 145 × 145 | 200 | 16 | 10,249 | 20 |
UP | ROSIS | 430–860 | 610 × 340 | 103 | 9 | 42,776 | 1.3 m |
No | Class | Training | Testing | Total |
---|---|---|---|---|
1 | Brocoli_green_weeds_1 | 402 | 1607 | 2009 |
2 | Brocoli_green_weeds_2 | 744 | 2982 | 3726 |
3 | Fallow | 394 | 1582 | 1976 |
4 | Fallow_rough_plow | 278 | 1116 | 1394 |
5 | Fallow_smooth | 536 | 2142 | 2678 |
6 | Stubble | 792 | 3167 | 3959 |
7 | Celery | 716 | 2863 | 3579 |
8 | Grapes_untrained | 2254 | 9017 | 11,271 |
9 | Soil_vinyard_develop | 1240 | 4963 | 6203 |
10 | Corn_senesced_green_weeds | 656 | 2622 | 3278 |
11 | Lettuce_romaine_4wk | 214 | 854 | 1068 |
12 | Lettuce_romaine_5wk | 386 | 1541 | 1927 |
13 | Lettuce_romaine_6wk | 182 | 734 | 916 |
14 | Lettuce_romaine_7wk | 214 | 856 | 1070 |
15 | Vinyard_untrained | 1454 | 5814 | 7268 |
16 | Vinyard_vertical_trellis | 360 | 1447 | 1807 |
Total | 10,822 | 43,307 | 54,129 |
No. | Class | Training | Testing | Total |
---|---|---|---|---|
1 | Alfalfa | 8 | 38 | 46 |
2 | Corn-no till | 284 | 1144 | 1428 |
3 | Corn-min till | 166 | 664 | 830 |
4 | Corn | 46 | 191 | 237 |
5 | Grass/pasture | 146 | 584 | 730 |
6 | Grass/tress | 96 | 387 | 483 |
7 | Grass/pasture-mowed | 6 | 22 | 28 |
8 | Hay-windrowed | 94 | 384 | 478 |
9 | Soybeans-no till | 194 | 778 | 972 |
10 | Soybeans-min till | 490 | 1965 | 2455 |
11 | Soybeans-clean till | 118 | 475 | 593 |
12 | Wheat | 40 | 165 | 205 |
13 | Woods | 252 | 1013 | 1265 |
14 | Buildings-grass-trees | 76 | 310 | 386 |
15 | Stone-steel towers | 18 | 75 | 93 |
16 | Oats | 4 | 16 | 20 |
Total | 2038 | 8211 | 10,249 |
No | Class | Training | Testing | Total |
---|---|---|---|---|
1 | Asphalt | 1326 | 7294 | 6631 |
2 | Meadows | 3728 | 20,513 | 18,649 |
3 | Gravel | 418 | 2308 | 2099 |
4 | Trees | 612 | 3370 | 3064 |
5 | Sheets | 268 | 1479 | 1345 |
6 | Bare Soil | 1004 | 5531 | 5029 |
7 | Bitumen | 266 | 1463 | 1330 |
8 | Bricks | 736 | 4050 | 3682 |
9 | Shadows | 188 | 1041 | 947 |
Total | 8546 | 34,230 | 42,776 |
IS | PS | Dataset | OA (%) | AA (%) | K × 100 |
---|---|---|---|---|---|
SA | 97.18 | 97.74 | 97.51 | ||
16 | 4 | IN | 93.42 | 93.64 | 93.77 |
UP | 96.45 | 97.03 | 96.87 | ||
SA | 96.49 | 97.10 | 97.35 | ||
4 | IN | 94.16 | 94.45 | 94.08 | |
UP | 96.34 | 97.53 | 96.98 | ||
32 | SA | 97.57 | 96.46 | 96.33 | |
8 | IN | 97.27 | 97.05 | 97.79 | |
UP | 97.08 | 98.13 | 98.22 | ||
SA | 98.36 | 98.14 | 98.07 | ||
4 | IN | 96.62 | 96.76 | 95.32 | |
UP | 98.52 | 98.47 | 97.89 | ||
SA | 97.96 | 98.73 | 98.32 | ||
64 | 8 | IN | 97.33 | 97.52 | 97.16 |
UP | 98.62 | 98.53 | 99.01 | ||
SA | 99.91 | 99.72 | 99.81 | ||
16 | IN | 99.43 | 98.75 | 98.85 | |
UP | 99.55 | 99.50 | 99.47 |
No | Class | CNN | SA-MCN | 3D-CNN | SSRN | MSRN | Proposed |
---|---|---|---|---|---|---|---|
1 | Brocoli_green_weeds_1 | 80.64 | 95.72 | 100.00 | 96.38 | 99.31 | 99.69 |
2 | Brocoli_green_weeds_2 | 82.75 | 92.64 | 98.53 | 96.56 | 99.28 | 100.00 |
3 | Fallow | 80.14 | 97.33 | 97.38 | 99.55 | 100.00 | 99.25 |
4 | Fallow_rough_plow | 83.52 | 91.46 | 98.12 | 98.72 | 98.32 | 100.00 |
5 | Fallow_smooth | 82.33 | 92.18 | 98.13 | 99.59 | 99.71 | 99.58 |
6 | Stubble | 78.86 | 93.52 | 97.89 | 98.37 | 100.00 | 100.00 |
7 | Celery | 84.39 | 91.42 | 96.64 | 99.73 | 98.82 | 99.58 |
8 | Grapes_untrained | 86.51 | 95.41 | 98.32 | 100.00 | 99.73 | 100.00 |
9 | Soil_vinyard_develop | 82.43. | 88.83 | 98.95 | 97.17 | 100.00 | 99.78 |
10 | Corn_senesced_green_weeds | 81.46 | 90.39 | 100.00 | 98.13 | 99.62 | 99.71 |
11 | Lettuce_romaine_4wk | 82.12 | 94.74 | 99.13 | 98.14 | 99.17 | 100.00 |
12 | Lettuce_romaine_5wk | 86.77 | 92.71 | 97.35 | 99.63 | 97.63 | 99.54 |
13 | Lettuce_romaine_6wk | 81.26 | 87.36 | 98.74 | 97.85 | 99.86 | 100.00 |
14 | Lettuce_romaine_7wk | 86.08 | 95.13 | 97.62 | 98.54 | 100.00 | 99.92 |
15 | Vinyard_untrained | 79.31 | 92.78 | 98.33 | 99.19 | 99.32 | 100.00 |
16 | Vinyard_vertical_trellis | 81.52 | 94.17 | 97.86 | 99.34 | 99.17 | 99.75 |
Overall accuracy (%) | 83.15 | 93.76 | 98.14 | 99.15 | 99.63 | 99.91 | |
Average accuracy (%) | 82.41 | 93.21 | 98.08 | 98.89 | 99.41 | 99.63 | |
Kappa × 100 | 82.23 | 93.16 | 98.03 | 99.05 | 99.51 | 99.78 |
No | Class | CNN | SA-MCN | 3D-CNN | SSRN | MSRN | Proposed |
---|---|---|---|---|---|---|---|
1 | Alfalfa | 84.29 | 92.16 | 99.15 | 97.31 | 100.00 | 99.02 |
2 | Corn-no till | 83.18 | 92.41 | 96.23 | 98.17 | 100.00 | 99.37 |
3 | Corn-min till | 82.51 | 90.40 | 97.44 | 99.38 | 99.25 | 98.38 |
4 | Corn | 87.23 | 89.82 | 98.16 | 98.32 | 100.00 | 100.00 |
5 | Grass-pasture | 79.16 | 87.63 | 99.27 | 99.13 | 100.00 | 99.21 |
6 | Grass-tress | 78.24 | 94.64 | 98.23 | 99.18 | 98.56 | 99.14 |
7 | Grass-pasture | 81.33 | 92.76 | 97.33 | 98.86 | 100.00 | 99.19 |
8 | Hay-windrowed | 80.12 | 91.51 | 97.28 | 99.24 | 100.00 | 98.51 |
9 | Oats | 81.78. | 93.13 | 98.12 | 99.34 | 100.00 | 99.27 |
10 | Soybeans-no till | 80.62 | 92.38 | 97.76 | 97.82 | 99.17 | 99.34 |
11 | Soybeans-min till | 81.28 | 90.33 | 97.92 | 98.17 | 100.00 | 100.00 |
12 | Soybeans-clean till | 83.16 | 88.92 | 98.19 | 99.18 | 100.00 | 99.23 |
13 | Wheat | 80.14 | 90.76 | 99.13 | 97.32 | 100.00 | 98.86 |
14 | Woods | 77.32 | 88.86 | 97.22 | 98.86 | 99.38 | 99.46 |
15 | Buildings-grass-trees | 80.13 | 94.17 | 98.56 | 99.35 | 98.89 | 99.28 |
16 | Stone-steel towers | 82.71 | 92.36 | 98.16 | 99.14 | 99.38 | 99.29 |
Overall accuracy (%) | 82.33 | 92.76 | 98.13 | 99.08 | 99.37 | 99.22 | |
Average accuracy (%) | 81.52 | 91.39 | 97.38 | 98.92 | 99.45 | 99.08 | |
Kappa × 100 | 82.09 | 91.54 | 97.92 | 98.73 | 99.61 | 99.19 |
No | Class | CNN | SA-MCN | 3D-CNN | SSRN | MSRN | Proposed |
---|---|---|---|---|---|---|---|
1 | Asphalt | 83.36 | 90.12 | 98.13 | 99.36 | 98.74 | 99.32 |
2 | Meadows | 81.19 | 91.36 | 96.89 | 97.35 | 100.00 | 100.00 |
3 | Gravel | 77.32 | 90.18 | 97.56 | 98.37 | 99.56 | 99.45 |
4 | Trees | 80.57 | 88.25 | 98.34 | 100.00 | 100.00 | 99.53 |
5 | Metal | 81.65. | 89.32 | 97.72 | 99.82 | 98.83 | 99.31 |
6 | Soil | 84.33 | 89.73 | 98.17 | 98.26 | 100.00 | 99.94 |
7 | Bitumen | 82.36 | 90.16 | 99.46 | 97.79 | 98.32 | 99.27 |
8 | Bricks | 81.37 | 91.33 | 98.47 | 98.86 | 100.00 | 100.00 |
9 | Shadows | 86.59 | 90.50 | 96.45 | 99.32 | 99.67 | 99.72 |
Overall accuracy (%) | 84.13 | 92.25 | 98.03 | 99.12 | 99.82 | 99.64 | |
Average accuracy (%) | 82.76 | 92.37 | 98.21 | 99.08 | 99.59 | 99.67 | |
Kappa × 100 | 82.88 | 91.76 | 98.14 | 98.93 | 99.71 | 99.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved Transformer Net for Hyperspectral Image Classification. Remote Sens. 2021, 13, 2216. https://doi.org/10.3390/rs13112216
Qing Y, Liu W, Feng L, Gao W. Improved Transformer Net for Hyperspectral Image Classification. Remote Sensing. 2021; 13(11):2216. https://doi.org/10.3390/rs13112216
Chicago/Turabian StyleQing, Yuhao, Wenyi Liu, Liuyan Feng, and Wanjia Gao. 2021. "Improved Transformer Net for Hyperspectral Image Classification" Remote Sensing 13, no. 11: 2216. https://doi.org/10.3390/rs13112216
APA StyleQing, Y., Liu, W., Feng, L., & Gao, W. (2021). Improved Transformer Net for Hyperspectral Image Classification. Remote Sensing, 13(11), 2216. https://doi.org/10.3390/rs13112216