Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength
"> Figure 1
<p>Study area and an example Sentinel 2 sub-image (band 4). The square represents a histogram-stretched cut of the image, highlighting the waves therein. Coordinates are expressed in UTM N30.</p> "> Figure 2
<p>(<b>a</b>) In situ bathymetry. (<b>b</b>,<b>c</b>) two examples of simulated wave images, shaded from simulated waves height. The solar azimuth and zenith angles used for shading are standard values (45°, 45°). Coordinates are expressed in UTM N30.</p> "> Figure 3
<p>Sentinel 2 dataset centered on the study area and acquisition dates. Color composite with bands 4, 3, 2 displayed as red, blue and green. The grey square presents a closer look image to show how Sentinel 2 recorded waves on different dates. The close-up image colors are enhanced by histogram-stretching for the purpose of visualization. Coordinates are expressed in UTM N30.</p> "> Figure 4
<p>FFT spectra of the simulated waves (<b>left</b>) and Sentinel 2 waves (<b>right</b>). Size of the FFT window in this example: 106 pixels for the simulated waves and 32 pixels for Sentinel 2. <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">c</mi> <mo>,</mo> <mi mathvariant="sans-serif">λ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> couples are here represented as (<span class="html-italic">f,</span><math display="inline"> <semantics> <mrow> <mo> </mo> <mi>Φ</mi> </mrow> </semantics> </math>) couples; <span class="html-italic">f</span> is the FFT frequency—proportional to <math display="inline"> <semantics> <mi mathvariant="sans-serif">λ</mi> </semantics> </math>- and <math display="inline"> <semantics> <mi>Φ</mi> </semantics> </math> is the FFT phase that we used to calculate <math display="inline"> <semantics> <mi mathvariant="normal">c</mi> </semantics> </math>.</p> "> Figure 5
<p>(<b>a</b>) In situ bathymetry, (<b>b</b>) bathymetry retrieved from the simulated waves, and (<b>c</b>) bathymetry retrieved from Sentinel 2. The land masks in (<b>b</b>,<b>c</b>) were bigger than in (<b>a</b>) because the correlation window of 32 × 32 pixels, associated with a sampling step of 16 pixels, yielded a decrease in the spatial resolution. Each bathymetric map is provided in the NGF-IGN69 vertical reference frame.</p> "> Figure 6
<p>(<b>a</b>) Scatterplot of the in situ bathymetry <span class="html-italic">versus</span> the bathymetry from the simulated waves. (<b>b</b>) Scatterplot of the in situ bathymetry <span class="html-italic">versus</span> the bathymetry from Sentinel 2.The dark blue dots represent the mean value per bin, and the blue bars represent the RMSE per bin; please see the main text for further explanations. The dark dotted line represents the 1:1 correlation line. The orange dotted line represents the linear fit to the data, the best-fitting equation of which is located at top of the graph, along with the corresponding r<sup>2</sup> value.</p> "> Figure 7
<p>Example of the h dependency on c and λ for five values of λ, from Equation (1). It can be seen that the precision of the measured celerity was much more critical than the wavelength.</p> ">
Abstract
:1. Introduction
1.1. Theoretical Background
1.2. Related Works
1.3. Our Approach
2. Materials and Methods
2.1. Data
2.1.1. Study Area, in situ Bathymetry, and Simulated Waves
2.1.2. Sentinel 2 MultiSpectral Imager
2.2. Methodology
2.3. Correction for Tidal Offsets
3. Results
3.1. Results Obtained with the Simulated Dataset
3.2. Results with Sentinel 2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens. 1985, 6, 115–125. [Google Scholar] [CrossRef]
- Feigels, J. LiDARs for oceanological research: Criteria for comparison, main limitations, perspectives. Ocean Opt. 1992, 1750, 473–484. [Google Scholar]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of Sentinel 2A/B satellites mission. Remote Sens. 2020, 12, 451. [Google Scholar] [CrossRef]
- Airy, G.B. Tides and waves. Encyclopaedia Metropolitana (1817–1845), Mixed Sciences. In Trigonometry, On the Figure of the Earth, Tides and Waves; Rose, H.J., Ed.; London, UK, 1841; Volume 3, 396p. [Google Scholar]
- Phillips, O.M. The Dynamics of the Upper Ocean; Cambridge University Press: Cambridge, UK, 1977; pp. 1–336. [Google Scholar]
- Williams, W.W. The Determination of Gradients on Enemy-Held Beaches. Geogr. J. 1947, 109, 76. [Google Scholar] [CrossRef]
- Danilo, C.; Melgani, F. Wave Period and Coastal Bathymetry Using Wave Propagation on Optical Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6307–6319. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.; et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef]
- Abileah, R. Mapping shallow water depth from satellite. In Proceedings of the ASPRS Annual Conference, San Carlos, CA, USA, 1–5 May 2006; pp. 1–7. [Google Scholar]
- de Michele, M.; Leprince, S.; Thiébot, J.; Raucoules, D.; Binet, R. Direct measurement of ocean waves velocity field from a single SPOT-5 dataset. Remote Sens. Environ. 2012, 119, 266–271. [Google Scholar] [CrossRef]
- Danilo, C.; Binet, R. Bathymetry estimation from wave motion with optical imagery: Influence of acquisition parameters. In Proceedings of the 2013 MTS/IEEE OCEANS conference, Bergen, Norway, 10–13 June 2013; pp. 1–5. [Google Scholar]
- Poupardin, A.; Idier, D.; De Michele, M.; Raucoules, D. Water Depth Inversion from a Single SPOT-5 Dataset. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2329–2342. [Google Scholar] [CrossRef]
- Poupardin, A.; De Michele, M.; Raucoules, D.; Idier, D. Water depth inversion from satellite dataset. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2277–2280. [Google Scholar]
- Bergsma, E.W.J.; Almar, R.; Maisongrande, P. Radon-Augmented Sentinel-2 Satellite Imagery to Derive Wave-Patterns and Regional Bathymetry. Remote Sens. 2019, 11, 1918. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Maisongrande, P.; de Almeida, L.P.M. Wave-derived coastal bathymetry from satellite video imagery: A showcase with Pleiades persistent mode. Remote. Sens. Environ. 2019, 231, 111263. [Google Scholar] [CrossRef]
- Yurovskaya, M.; Kudryavtsev, V.; Chapron, B.; Collard, F. Ocean surface current retrieval from space: The Sentinel-2 multispectral capabilities. Remote Sens. Environ. 2019, 234, 111468. [Google Scholar] [CrossRef]
- Idier, D.; Rohmer, J.; Pedreros, R.; Le Roy, S.; Lambert, J.; Louisor, J.; Le Cozannet, G.; Le Cornec, E. Coastal flood: A composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches. Nat. Hazards 2020, 101, 465–501. [Google Scholar] [CrossRef]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Hasselmann, K.; Olbers, D. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft Dtsch. Hydrogr. Z. Reihe A 1993, 12, 1–95. [Google Scholar]
- Ardhuin, F.; Rogers, W.; Babanin, A.; Filipot, J.-F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef]
- Suhet, H.B. Sentinel-2 User Handbook. ESA Standard Document. Issue 1. Revision 1; European Space Agency (ESA), 2015. Available online: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi (accessed on 3 May 2019).
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Van Puymbroeck, N.; Michel, R.; Binet, R.; Avouac, J.-P.; Taboury, J. Measuring earthquakes from optical satellite images. Appl. Opt. 2000, 39, 3486–3494. [Google Scholar] [CrossRef]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A.; Picot, N. FES 2014, a new tidal model Validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- SHOM. Références Altimétriques Maritimes; SHOM publishing: Brest, France, 2017; ISBN 978-2-11-139469-8. [Google Scholar]
- Ardhuin, F. 2021. Available online: https://marc.ifremer.fr/resultats/courants/modeles_mars3d_manche_gascogne (accessed on 1 February 2021).
- Bergsma, E.W.; Almar, R.; Rolland, A.; Binet, R.; Brodie, K.L.; Bak, A.S. Coastal morphology from space: A showcase of monitoring the topography-bathymetry continuum. Remote Sens. Environ. 2021, 261, 112469. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Michele, M.; Raucoules, D.; Idier, D.; Smai, F.; Foumelis, M. Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength. Remote Sens. 2021, 13, 2149. https://doi.org/10.3390/rs13112149
de Michele M, Raucoules D, Idier D, Smai F, Foumelis M. Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength. Remote Sensing. 2021; 13(11):2149. https://doi.org/10.3390/rs13112149
Chicago/Turabian Stylede Michele, Marcello, Daniel Raucoules, Deborah Idier, Farid Smai, and Michael Foumelis. 2021. "Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength" Remote Sensing 13, no. 11: 2149. https://doi.org/10.3390/rs13112149
APA Stylede Michele, M., Raucoules, D., Idier, D., Smai, F., & Foumelis, M. (2021). Shallow Bathymetry from Multiple Sentinel 2 Images via the Joint Estimation of Wave Celerity and Wavelength. Remote Sensing, 13(11), 2149. https://doi.org/10.3390/rs13112149