BeiDou-Based Passive Radar Vessel Target Detection: Method and Experiment via Long-Time Optimized Integration
"> Figure 1
<p>Reference surveillance scenario.</p> "> Figure 2
<p>The fitting errors with different Taylor expansion orders: (<b>a</b>) range error; (<b>b</b>) Doppler error.</p> "> Figure 3
<p>Proposed integration method flowchart.</p> "> Figure 4
<p>Point-like vessel target.</p> "> Figure 5
<p>Coherent integration result of a single frame in RD domain: (<b>a</b>) first frame, (<b>b</b>) central frame, and (<b>c</b>) last frame.</p> "> Figure 6
<p>Final RD map after PSO-based long-time integration.</p> "> Figure 7
<p>The long-time integration results in RD domain using the existing method.</p> "> Figure 8
<p>Cross-sections of the RD maps: (<b>a</b>) range cross-sections and (<b>b</b>) Doppler cross-sections.</p> "> Figure 9
<p>Detection probability of the proposed method and the existing method.</p> "> Figure 10
<p>Maritime experiment: (<b>a</b>) receiving system, (<b>b</b>) vessel target.</p> "> Figure 11
<p>Range-compressed data of satellite C41.</p> "> Figure 12
<p>Final RD map for the maritime experiment.</p> "> Figure 13
<p>Range profiles of the final integrated results.</p> "> Figure 14
<p>Final integrated RD map referring to the other BeiDou satellites: (<b>a</b>) C27, (<b>b</b>) C38, and (<b>c</b>) C40.</p> ">
Abstract
:1. Introduction
2. Echo Model and Characteristic Analysis
3. Long-Time Optimized Integration for Vessel Target Detection
Algorithm 1 Long-time optimized integration method | |
Input: | M signal frames after keystone transform |
Output: | Actual Doppler shift and DFR values of the M frames |
1. | Model the optimization problem as given in (20). |
2. | Initialize the population size I, generation number G, search space . |
3. | Randomly initialize of the i-th particle in . |
4. | Evaluate the initial objective value of the function . |
5. | Initialize the personal archive and global archive. |
6. | For g = 1 to G |
7. | Select gBest from global archive. |
8. | Adjust iteration parameters. |
9. | For i = 1 to I |
10. | Select pBest from personal archive. |
11. | Update velocity and position of the i-th particle. |
12. | Evaluate the objective value . |
13. | Update personal archive. |
14. | Update global archive. |
15. | End For |
16. | End For |
17. | Return particle position. |
4. Results
4.1. Simulated Results
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Griffiths, H.D.; Baker, C.J. Passive coherent location radar systems. Part 1: Performance prediction. IEE Proc. Radar Son. Nav. 2005, 152, 153–159. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Liu, Z.; Yang, H.; Wu, J.; Yang, J. Bistatic Forward-Looking SAR MP-DPCA Method for SpaceTime Extension Clutter Suppression. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6565–6579. [Google Scholar] [CrossRef]
- Kuschel, H. Approaching 80 years of passive radar. In Proceedings of the International Conference on Radar, Adelaide, Australia, 9–12 September 2013. [Google Scholar]
- Zaimbashi, A.; Derakhtian, M.; Sheikhi, A. Invariant Target Detection in Multiband FM-Based Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 720–736. [Google Scholar] [CrossRef]
- Choi, S.; Crouse, D.; Willett, P.; Zhou, S. Multistatic target tracking for passive radar in a DAB/DVB network: Initiation. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2460–2469. [Google Scholar] [CrossRef]
- Feng, W.; Friedt, J.; Goavec-Merou, G.; Sato, M. Passive radar delay and angle of arrival measurements of multiple acoustic delay lines used as passive sensors. IEEE Sens. J. 2019, 19, 594–602. [Google Scholar] [CrossRef]
- Gao, F.; Xu, T.; Meng, X.; Wang, N.; He, Y.; Ning, B. A Coastal Experiment for GNSS-R Code-Level Altimetry Using BDS-3 New Civil Signals. Remote Sens. 2021, 13, 1378. [Google Scholar] [CrossRef]
- Hammond, M.L.; Foti, G.; Rawlinson, J.; Gommenginger, C.; Srokosz, M.; King, L.; Unwin, M.; Roselló, J. First Assessment of Geophysical Sensitivities from Spaceborne Galileo and BeiDou GNSS-Reflectometry Data Collected by the UK TechDemoSat-1 Mission. Remote Sens. 2020, 12, 2927. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Chen, W. Analysis of radar sensing coverage of a passive GNSS-based SAR system. In Proceedings of the International Conference on Localization and GNSS, Nottingham, UK, 27–29 June 2017. [Google Scholar]
- Hu, C.; Liu, C.; Wang, R.; Chen, L.; Wang, L. Detection and SISAR Imaging of Aircrafts Using GNSS Forward Scatter Radar: Signal Modeling and Experimental Validation. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2077–2093. [Google Scholar] [CrossRef]
- di Simone, A.; Park, H.; Riccio, D.; Camps, A. Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data. IEEE J. STARS 2017, 10, 4237–4255. [Google Scholar] [CrossRef]
- He, X.; Zeng, T.; Cherniakov, M. Signal detectability in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc. Radar Son. Nav. 2005, 152, 124–132. [Google Scholar] [CrossRef]
- Pieralice, F.; Santi, F.; Pastina, D.; Bucciarelli, M.; Ma, H.; Antoniou, M.; Cherniakov, M. GNSS-based passive radar for maritime surveillance: Long integration time MTI technique. In Proceedings of the IEEE Radar Conference, Seattle, WA, USA, 8–12 May 2017. [Google Scholar]
- Pastina, D.; Santi, F.; Pieralice, F.; Antoniou, M.; Cherniakov, M. Passive Radar Imaging of Ship Targets with GNSS Signals of Opportunity. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2627–2642. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Li, B.; Li, C. Multiscale Rotated Bounding Box-Based Deep Learning Method for Detecting Ship Targets in Remote Sensing Images. Sensors 2018, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Anagaw, A.; Chang, L.; Wang, Y.; Hsiao, C.; Lee, W. Ship Detection Based on YOLOv2 for SAR Imagery. Remote Sens. 2019, 11, 786. [Google Scholar] [CrossRef] [Green Version]
- Rostami, M.; Kolouri, S.; Eaton, E. SAR Image Classification Using Few-Shot Cross-Domain Transfer Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Xue, Y.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic Ship Detection in Remote Sensing Images from Google Earth of Complex Scenes Based on Multiscale Rotation Dense Feature Pyramid Networks. Remote Sens. 2018, 10, 132. [Google Scholar]
- Li, Z.; Santi, F.; Pastina, D.; Lombardo, P. Multi-frame fractional Fourier transform technique for moving target detection with space-based passive radar. IEE Proc. Radar Son. Nav. 2017, 11, 822–828. [Google Scholar] [CrossRef]
- Ma, H.; Antoniou, M.; Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Cherniakov, M. Maritime moving target indication using passive GNSS-based bistatic radar. Trans. Aerosp. Electron. Syst. 2018, 54, 115–130. [Google Scholar] [CrossRef]
- Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Ma, H.; Tzagkas, D.; Antoniou, M.; Cherniakov, M. Moving vessel target long time integration for GNSS-based passive bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3060–3083. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, L.; Meng, W.; Gu, Q.; Han, Y.; Hong, Z. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups. IEEE J. STARS 2015, 8, 4130–4140. [Google Scholar] [CrossRef]
- Potter, L.C.; Moses, R.L. Attributed scattering centers for SAR ATR. IEEE Trans. Image Process. 1997, 6, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Key, E.L.; Fowle, E.N.; Haggarty, R.D. A method of designing signals of large time-bandwidth product. IRE Int. Conv. Rec. 1961, 4, 146–154. [Google Scholar]
- Hu, W.; Yen, G.G. Adaptive Multiobjective Particle Swarm Optimization Based on Parallel Cell Coordinate System. IEEE Trans. Evol. Comput. 2015, 19, 1–18. [Google Scholar]
Parameters | Value |
---|---|
Target position | (1000, 0, 0) m |
Target velocity | (3.08, 5.35, 0) m/s |
Target acceleration | (0.028, 0, 0) m/s2 |
Dwell time | 105 s |
Parameters | Value |
---|---|
Satellite number | C41 |
Satellite orbit | Medium Earth orbit |
Signal type | B3I |
Carrier frequency | 1268.520 MHz |
Signal chip rate | 10.23 MHz |
Sampling rate | 50 MHz |
Equivalent PRI | 1 ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Li, Z.; Lou, M.; Qiu, X.; An, H.; Wu, J.; Yang, J.; Huang, W. BeiDou-Based Passive Radar Vessel Target Detection: Method and Experiment via Long-Time Optimized Integration. Remote Sens. 2021, 13, 3933. https://doi.org/10.3390/rs13193933
Huang C, Li Z, Lou M, Qiu X, An H, Wu J, Yang J, Huang W. BeiDou-Based Passive Radar Vessel Target Detection: Method and Experiment via Long-Time Optimized Integration. Remote Sensing. 2021; 13(19):3933. https://doi.org/10.3390/rs13193933
Chicago/Turabian StyleHuang, Chuan, Zhongyu Li, Mingyue Lou, Xingye Qiu, Hongyang An, Junjie Wu, Jianyu Yang, and Wei Huang. 2021. "BeiDou-Based Passive Radar Vessel Target Detection: Method and Experiment via Long-Time Optimized Integration" Remote Sensing 13, no. 19: 3933. https://doi.org/10.3390/rs13193933
APA StyleHuang, C., Li, Z., Lou, M., Qiu, X., An, H., Wu, J., Yang, J., & Huang, W. (2021). BeiDou-Based Passive Radar Vessel Target Detection: Method and Experiment via Long-Time Optimized Integration. Remote Sensing, 13(19), 3933. https://doi.org/10.3390/rs13193933