Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model
<p>The workflow of the proposed approach: (<b>a</b>) input of the photogrammetric mesh model; (<b>b</b>,<b>c</b>) segmented components; (<b>d</b>,<b>e</b>) minimum circumscribed cuboids; (<b>f</b>) adjusting model; (<b>g</b>) final 3D building façade model.</p> "> Figure 2
<p>An illustration of the local contour tree of the photogrammetric mesh model: (<b>a</b>) contours tracking results; (<b>b</b>) local contour tree generation result.</p> "> Figure 3
<p>Illustration of decomposition of the photogrammetric mesh model: (<b>a</b>) decomposed photogrammetric mesh model components; (<b>b</b>) photogrammetric mesh model components after modification.</p> "> Figure 4
<p>The workflow of the cuboid abstraction processing.</p> "> Figure 5
<p>Illustration of the robust cuboid fitting segmentation: (<b>a</b>) top view of the model component; (<b>b</b>) fitting result.</p> "> Figure 6
<p>Top view of extending the endpoint of the non-overlapping region to the nearest plane: (<b>a</b>) the two endpoints (red circle) before extension; (<b>b</b>) the two endpoints after extension.</p> "> Figure 7
<p>Illustration of the cuboid abstraction processing: (<b>a</b>) input of the original photogrammetric mesh model; (<b>b</b>) the first fitted cuboid; (<b>c</b>) the modification of the first fitted cuboid; (<b>d</b>) the second fitted cuboid; (<b>e</b>) combined cuboid abstraction result.</p> "> Figure 8
<p>The reconstruction results. Each row (from left to right) presents the original photogrammetric mesh model, initial cuboid abstraction set, façade model overlaid on the original date, and 3D building façade model.</p> "> Figure 9
<p>The graphics of reconstruction errors for four buildings: (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) façade model overlaid on the original date; (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) reconstruction error.</p> "> Figure 10
<p>The statistical results of the reconstruction errors for four buildings.</p> "> Figure 11
<p>A scene of photogrammetric mesh model.</p> "> Figure 12
<p>The façade reconstruction result.</p> "> Figure 13
<p>The statistical results of the reconstruction errors for a scene.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Overview of the Approach
2.2. Component Decomposition Based on Contours Analysis
2.2.1. Contour Segment Pair Generation
2.2.2. Decomposition of Components
2.3. Cuboid Abstraction
2.4. Parameter Adjustment of Cuboid Model Based on the Least Square Method
3. Experiment Results and Analysis
3.1. Date Description
3.2. Resontruction Results and Analysis
3.3. Reconstruc Result on a Whole Scene
4. Discussion
4.1. Comparison
4.2. Limitation of the Proposed Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Catita, C.; Redweik, P.; Pereira, J.; Brito, M.C. Extending solar potential analysis in buildings to vertical facades. Comput. Geosci. 2014, 66, 1–12. [Google Scholar] [CrossRef]
- Bagheri, H.; Schmitt, M.; Zhu, X. Fusion of multi-sensor-derived heights and OSM-derived building footprints for urban 3D reconstruction. ISPRS Int. J. Geo-Inf. 2019, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Weng, Q. Model-driven reconstruction of 3-D buildings using LiDAR data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1541–1545. [Google Scholar] [CrossRef]
- Xie, L.; Hu, H.; Zhu, Q.; Li, X.; Tang, S.; Li, Y.; Wang, W. Combined rule-based and hypothesis-based method for building model reconstruction from photogrammetric point clouds. Remote Sens. 2021, 13, 1107. [Google Scholar] [CrossRef]
- Xiao, J.; Fang, T.; Tan, P.; Zhao, P.; Ofek, E.; Quan, L. Image-based façade modeling. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Müller, P.; Zeng, G.; Wonka, P.; Van Gool, L. Image-based procedural modeling of façades. ACM Trans. Graph. 2007, 26, 85. [Google Scholar] [CrossRef]
- Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M. 3D building Façade reconstruction using handheld laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W5, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Edum-Fotwe, K.; Shepherd, P.; Brown, M.; Harper, D.; Dinnis, R. Fast, accurate and sparse, automatic façade reconstruction from unstructured ground laser-scans. In Proceedings of the ACM SIGGRAPH 2016, Anaheim, CA, USA, 24–28 July 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 45:1–45:2. [Google Scholar] [CrossRef] [Green Version]
- Pu, S.; Vosselman, G. Building façade reconstruction by fusing terrestrial laser points and images. Sensors 2009, 9, 4525–4542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemenschneider, H.; Krispel, U.; Thaller, W.; Donoser, M.; Havemann, S.; Fellner, D.; Bischof, H. Irregular lattices for complex shape grammar façade parsing. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE Computer Society: Washington, DC, USA; pp. 1640–1647. [Google Scholar]
- OSketch. Available online: https://www.zhdgps.com/ (accessed on 4 April 2021).
- DP-Modeler. Available online: http://www.whulabs.com/ (accessed on 4 April 2021).
- Zhang, H.; Xu, K.; Jiang, W.; Lin, J.; Cohen-Or, D.; Chen, B. Layered analysis of irregular façades via symmetry maximization. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, L.; Mathiopoulos, P.T.; Liu, F.; Zhang, L.; Li, S.; Liu, H. A hierarchical methodology for urban façade parsing from TLS point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 123, 75–93. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Wei, Z.; Fang, L. Extracting complex building façades from mobile laser scanning data. Acta Geod. Cartogr. Sin. 2013, 42, 411–417. [Google Scholar]
- Yan, L.; Hu, Q.W.; Wu, M.; Liu, J.M.; Wu, X. Extraction and simplification of building façade pieces from mobile laser scanner point clouds for 3D street view services. ISPRS Int. J. Geo-Inf. 2016, 5, 231. [Google Scholar] [CrossRef] [Green Version]
- Lafarge, F.; Descombes, X.; Zerubia, J.; Pierrot-Deseilligny, M. Structural approach for building reconstruction from a single DSM. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Kwak, E.; Habib, A. Automatic representation and reconstruction of DBM from LiDAR data using recursive minimum bounding rectangle. ISPRS J. Photogramm. Remote Sens. 2014, 93, 171–191. [Google Scholar] [CrossRef]
- Henn, A.; Gröger, G.; Stroh, V.; Plümer, L. Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2013, 76, 17–29. [Google Scholar] [CrossRef]
- Cheng, L.; Gong, J. Building boundary extraction using very high resolution images and LiDAR. Acta Geod. Cartogr. Sin. 2008, 37, 391–393. [Google Scholar]
- Jiang, X.; Bunke, H. Fast segmentation of range images into planar regions by scan line grouping. Mach. Vis. Appl. 1994, 7, 115–122. [Google Scholar] [CrossRef]
- Sampath, A.; Shan, J. Segmentation and reconstruction of polyhedral building roofs from aerial LiDAR point clouds. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1554–1567. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.; Li, J.; Liu, R. Urban building roof segmentation from airborne LiDAR point clouds. Int. J. Remote Sens. 2012, 33, 6497–6515. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, L.; Mathiopoulos, P.; Huang, X. A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199–4217. [Google Scholar] [CrossRef]
- Wu, B.; Yu, B.; Wu, Q.; Yao, S. A Graph-based approach for 3D building model reconstruction from airborne LiDAR point clouds. Remote Sens. 2017, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Nan, L.; Jiang, C.; Ghanem, B.; Wonka, P. Template assembly for detailed urban reconstruction. Comput. Graph. Forum. 2015, 34, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Nan, L.; Smith, N.; Wonka, P. Reconstructing building mass models from UAV images. Comput. Graph. 2016, 54, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Nan, L.; Liu, S. Fitting boxes to Manhattan scenes using linear integer programming. Int. J. Digit. Earth 2016, 9, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wonka, P.; Nan, L. Manhattan-World Urban Reconstruction from Point Clouds. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 54–69. [Google Scholar]
- Zhang, Z.; Zhang, J. Digital Photogrammetry, 1st ed.; Wuhan University Press: Wuhan, China, 1997; pp. 83–84. [Google Scholar]
- ContextCapture. Available online: https://www.bentley.com/en/products/brands/contextcapture (accessed on 4 April 2021).
- Song, J.; Wu, J.; Jiang, Y. Extraction and reconstruction of curved surface buildings by contour clustering using airborne LiDAR data. Optik 2015, 126, 513–521. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, S.; Yu, B.; Beck, R.; Hinkel, K. A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data. Int. J. Geogr. Inf. Sci. 2015, 29, 2041–2060. [Google Scholar] [CrossRef]
- Lafarge, F.; Mallet, C. Creating large-scale city models from 3d-point clouds: A robust approach with hybrid representation. Int. J. Comput. Vis. 2012, 99, 69–85. [Google Scholar] [CrossRef]
Test Data | Number of Vertices | Number of Triangle Facets |
---|---|---|
Building A | 4324 | 8081 |
Building B | 2647 | 4899 |
Building C | 3424 | 6322 |
Building D | 1834 | 3358 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, C.; Chen, S.; Chen, X. Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model. Remote Sens. 2021, 13, 3801. https://doi.org/10.3390/rs13193801
Zhang Y, Zhang C, Chen S, Chen X. Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model. Remote Sensing. 2021; 13(19):3801. https://doi.org/10.3390/rs13193801
Chicago/Turabian StyleZhang, Yunsheng, Chi Zhang, Siyang Chen, and Xueye Chen. 2021. "Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model" Remote Sensing 13, no. 19: 3801. https://doi.org/10.3390/rs13193801
APA StyleZhang, Y., Zhang, C., Chen, S., & Chen, X. (2021). Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model. Remote Sensing, 13(19), 3801. https://doi.org/10.3390/rs13193801