A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR
<p>The geometry model of spotlight SAR imaging.</p> "> Figure 2
<p>The relationship between scene radius and carrier frequency.</p> "> Figure 3
<p>The process of LOSPI and distortion correction.</p> "> Figure 4
<p>Rotated images into UCS.</p> "> Figure 5
<p>The 2D distribution of target’s wavenumber spectrum.</p> "> Figure 6
<p>The relationship between azimuth integration angle and resolution.</p> "> Figure 7
<p>The relationship between overlapping ratio and frame rate.</p> "> Figure 8
<p>The main lobe widening and energy loss seriously affected the performance of PGA.</p> "> Figure 9
<p>Apply MD algorithm before PGA.</p> "> Figure 10
<p>The flowchart of imaging algorithm with three-step motion compensation.</p> "> Figure 11
<p>The image result of Lee filter and NSST. (<b>a</b>) The reference image. (<b>b</b>) The reference image with noisy. (<b>c</b>) The image result of Lee filter. (<b>d</b>) The image result of NSST.</p> "> Figure 12
<p>The grey scale between different frame images. (<b>a</b>) The reference image. (<b>b</b>) The original image. (<b>c</b>) The original image with energy balance.</p> "> Figure 13
<p>The grey scale histogram. (<b>a</b>) The grey scale histogram of <a href="#remotesensing-13-03706-f012" class="html-fig">Figure 12</a>a. (<b>b</b>) The grey scale histogram of <a href="#remotesensing-13-03706-f012" class="html-fig">Figure 12</a>b. (<b>c</b>) The grey scale histogram of <a href="#remotesensing-13-03706-f012" class="html-fig">Figure 12</a>c.</p> "> Figure 14
<p>The flowchart of forming ViSAR and Image fusion.</p> "> Figure 15
<p>Flight trajectory of the radar platform.</p> "> Figure 16
<p>Experimental scene. There are three groups of trihedral corner reflectors and an aircraft in the scene.</p> "> Figure 17
<p>The imaging result of a single frame. (<b>a</b>) Original image corrupted by azimuth-variant phase error. (<b>b</b>) Imaging result refocused by MD. (<b>c</b>) Imaging result refocused by MD and PGA. (<b>d</b>) Imaging result focused by PGA directly.</p> "> Figure 18
<p>The contour map of targets (<b>a</b>) Point <math display="inline"><semantics> <mi>a</mi> </semantics></math> in <a href="#remotesensing-13-03706-f017" class="html-fig">Figure 17</a> without any MOCO. (<b>b</b>) Point <math display="inline"><semantics> <msup> <mi>a</mi> <mo>′</mo> </msup> </semantics></math> in <a href="#remotesensing-13-03706-f017" class="html-fig">Figure 17</a> refocused by MD. (<b>c</b>) Point <math display="inline"><semantics> <msup> <mi>a</mi> <mo>″</mo> </msup> </semantics></math> in <a href="#remotesensing-13-03706-f017" class="html-fig">Figure 17</a> refocused by MD and PGA. (<b>d</b>) Point <math display="inline"><semantics> <msup> <mi>a</mi> <mo>‴</mo> </msup> </semantics></math> in <a href="#remotesensing-13-03706-f017" class="html-fig">Figure 17</a> refocused by PGA directly.</p> "> Figure 19
<p>Azimuth profile of point <math display="inline"><semantics> <mi>a</mi> </semantics></math>, <math display="inline"><semantics> <msup> <mi>a</mi> <mo>′</mo> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mi>a</mi> <mo>″</mo> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>a</mi> <mo>‴</mo> </msup> </semantics></math>.</p> "> Figure 20
<p>Imaging results of different frames. Indexes of images, from left to right then from up to down, are 1, 26, 51, 76, 101, 126, 151 and 176, respectively.</p> "> Figure 21
<p>The image fusion result of all frames.</p> "> Figure 22
<p>Experimental scene from Google Earth.</p> "> Figure 23
<p>3D flight trajectory of the radar platform.</p> "> Figure 24
<p>The imaging result of a single image. (<b>a</b>) The zoom-in imaging result and the target point are marked by the red circle. (<b>b</b>) Azimuth profile and measured parameters of target point. (<b>c</b>) Range profile and measured parameters of target point.</p> "> Figure 25
<p>Imaging results of different frames. The azimuth angles, from left to right then from up to down, are <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>30</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mn>5</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>335</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>260</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>230</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>190</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>165</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>100</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math> respectively.</p> "> Figure 26
<p>Tracking of moving cars on the ring road.</p> "> Figure 27
<p>The image fusion result of all frames.</p> ">
Abstract
:1. Introduction
- (i).
- The three-step MOCO, which was first applied to high resolution imaging, can effectively compensate for motion error;
- (ii).
- The procedure of ViSAR that is proposed in this paper can effectively improve ViSAR quality;
2. ViSAR Model
2.1. Theory of ViSAR Imaging Algorithm
2.2. Resolution and Frame Rate Analysis
2.3. Three-Step Motion Compensation
2.4. Complexity Analysis of Proposed Algorithm
3. Procedures of ViSAR
3.1. Image Registration
3.2. Image Denoise
3.3. Energy Balance
4. Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Palm, S.; Sommer, R.; Janssen, D.; Tessmann, A.; Stilla, U. Airborne Circular W-Band SAR for Multiple Aspect Urban Site Monitoring. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6996–7016. [Google Scholar] [CrossRef]
- Wang, W.; An, D.; Luo, Y.; Zhou, Z. The fundamental trajectory reconstruction results of ground moving target from single-channel CSAR geometry. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5647–5657. [Google Scholar] [CrossRef]
- Zuo, F.; Li, J.; Hu, R.; Pi, Y. Unified Coordinate System Algorithm for Terahertz Video-SAR Image Formation. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 725–735. [Google Scholar] [CrossRef]
- Wang, W.; An, D.; Zhou, Z. Preliminary Result of Airborne Video Synthetic Aperture Radar in THz Band. In Proceedings of the 6th APSAR, Xiamen, China, 26–29 November 2019. [Google Scholar]
- Ogut, M.; Cooke, C.; Deal, W.; Kangaslahti, P. A Novel 1/f Noise Mitigation Technique Applied to a 640GHz Receiver. IEEE Trans. Terahertz Sci. Technol. 2020, 5, 43338–43354. [Google Scholar]
- Toda, Y.; Ishiyama, S.; Khutoryan, E.; Idehara, T. Rattling of Oxygen lons in a Sub-Nanometer-Sized Cage Converts Terahertz Radiation to Visible Light. ACS Nano 2017, 11, 12358–12364. [Google Scholar] [CrossRef]
- Idehara, T.; Sabchevski, S.P. Development and applications of high-frequency gyrotrons in FIR FU covering the sub-THz to THz range. J. Infrared Millim. Terahertz Waves 2012, 33, 667–694. [Google Scholar] [CrossRef]
- Caris, M. 300 GHz radar for high resolution SAR and ISAR applications. In Proceedings of the 16th International Radar Symposium, Dresden, Germany, 24–26 June 2015. [Google Scholar]
- Garrara, W.G.; Goodman, R.S.; Majewski, M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech-House: Reading, MA, USA, 1995. [Google Scholar]
- Wang, W. Study on Key Techniques for Circular SAR-GMTI; National University of Defense Technology: Changsha, China, 2019. [Google Scholar]
- Ponce, O.; Prats, P.; Rodriguez-Cassola, M. Processing of circular SAR trajectories with fast factorized back-projection. IEEE Trans. Geosci. Remote Sens. 2011, 5, 3692–3695. [Google Scholar]
- Chen, L.; An, D.; Huang, X. A Backprojection-Based Imaging for Circular Synthetic Aperture Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3547–3555. [Google Scholar] [CrossRef]
- Fan, B.; Wang, J.; Qin, Y.; Wang, H.; Xiao, H. Polar format algorithm based on fast Gaussian grid non-uniform fast Fourier transform for spotlight synthetic aperture radar imaging. IET Radar Sonar Navig. 2014, 8, 513–524. [Google Scholar] [CrossRef]
- Fan, B.; Qin, Y.; You, P.; Wang, H. An Improved PFA With Aperture Accommodation for Widefield Spotlight SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2015, 12, 3–7. [Google Scholar] [CrossRef]
- Samczynski, P.; Kulpa, K.S. Coherent MapDrift Technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1505–1517. [Google Scholar] [CrossRef]
- Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Gorham, L.A. Large Scene SAR Image Formation. Ph.D. Thesis, Wright State University, Dayton, OH, USA, 2015. [Google Scholar]
- Gorham, L.A.; Rigling, B.D. Scene Size Limits for Polar Format Algorithm. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 73–84. [Google Scholar] [CrossRef]
- Chang, L.B.; Chen, S.; Qin, F. Scene Size Bounds for PFA Imaging with Postfiltering. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 47–52. [Google Scholar]
- Doren, N.E.; Jakowatz, C.V.; Wahl, D.E.; Thompson, P.A. General Formulation for Wavefront Curvature Correction in Polar-Formatted Spotlight-Mode SAR Images Using Space-Variant Post-Filtering. In Proceedings of the IEEE ICIP, Sant Barbara, CA, USA, 26–29 October 1997. [Google Scholar]
- Mao, X.; Zhu, D.; Zhu, Z. Polar Format Algorithm Wavefront Curvature Compensation Under Arbitary Radar Flight Path. In Proceedings of the CIE-Radar, Chengdu, China, 24–27 October 2011. [Google Scholar]
- Hu, R.; Li, X.; Yeo, T.S.; Yang, Y. Refocusing and Zoom-In Polar Format Algorithm for Curvilinear Spotlight SAR Imaging on Arbitrary Region of Interest. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7995–8010. [Google Scholar] [CrossRef]
- Gorham, L.; Rigling, B. Fast corrections for Polar format algorithm with a curved flight path. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2815–2884. [Google Scholar] [CrossRef]
- Makarov, P.A. Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation. IEEE Trans. Image Process. 2020, 29, 6006–6016. [Google Scholar] [CrossRef]
- An, D. Study on Imaging Techniques for High Resolution SAR Systems; National University of Defense Technology: Changsha, China, 2011. [Google Scholar]
- Moreira, J.R. A new method of aircraft motion error extraction from radar raw data for real time motion compensation. IEEE Trans. Geosci. Remote Sens. 1990, 28, 620–626. [Google Scholar] [CrossRef]
- Li, L.; Mao, S.; Asif, R. Improvement of Phase Gradient Autofocus Algorithm. Chin. J. Aeronaut. 1998, 3, 192–198. [Google Scholar]
- Liu, S.J.; Yuan, Y.N.; Gao, F.; Mao, S.Y. Method of moving target detection based on sub-image cancellation for single-antenna airborne synthetic aperture radar. J. Syst. Eng. Electron. 2007, 18, 448–453. [Google Scholar]
- Zhu, D.; Jiang, R.; Mao, X.; Zhu, Z. Multi-Subaperture PGA for SAR Autofocusing. IEEE Trans. Aerosp. Electron. Syst. 2012, 49, 468–488. [Google Scholar] [CrossRef]
- Yi, T.; He, Z.; He, F.; Dong, Z.; Wu, M.; Song, Y. A Compensation Method for Airborne SAR with Varying Accelerated Motion Error. Remote Sens. 2018, 10, 1124. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wu, C.; Xu, W.; Huang, P.; Tan, W.; Hong, W. Vibration Error Compensation Imaging Algorithm for Arc Array SAR Besed on Parameter Estimation. In Proceedings of the IEEE 6th APSAR, Xiamen, China, 26–29 November 2019. [Google Scholar]
- Chen, H.; Zhang, F.; Tang, B.; Yin, Q.; Sun, X. Slim and Efficient Neural Network Design for Recourse-Constrained SAR Target Recognition. Remote Sens. 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Tang, S.Y.; Zhang, L.R.; Guo, P. Focusing High-Resolution Airborne SAR with Topography Variations Using an Extended BPA Based on Time/Frequency Rotation Principle. Remote Sens. 2018, 8, 1275. [Google Scholar] [CrossRef] [Green Version]
- Dudczyk, J.; Kawalec, A. Optimizing the Minimum Cost Flow Algorithm for the Phase Unwrapping Process in SAR Radar. Bull. Pol. Acad. Sci.-Tech. Sci. 2014, 62, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Zych, C.; Wroska-Zych, A.; Dudczyk, J.; Kawalec, A. A correction in feedback loop applied to two-axis gimbal stabilization. Bull. Pol. Acad. Sci.-Tech. Sci. 2015, 63, 217–219. [Google Scholar] [CrossRef]
- Jia, G.; Buchroithner, M.F.; Chang, W.; Liu, Z. Fourier-Based 2-D Imaging Algorithm for Circular Synthetic Aperture Radar: Analysis and Application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 475–489. [Google Scholar] [CrossRef]
- Jia, G.; Chang, W.; Zhang, Q. The Analysis and Realization of Motion Compensation for Circular Synthetic Aperture Radar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3060–3071. [Google Scholar] [CrossRef]
- Chen, L. Research of Airborne Circular Synthetic Aperture Radar Imaging Technique; National University of Defense Technology: Changsha, China, 2018. [Google Scholar]
- Brown, W.M. SAR Resolution in the Presence of Phase Error. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 808–814. [Google Scholar] [CrossRef]
- Evangelidis, G.D.; Psarakis, E.Z. Parametric Image Alignment using Enhanced Correlation Coefficient. IEEE Trans. PAMI 2008, 30, 1858–1865. [Google Scholar] [CrossRef] [Green Version]
- Samritjiarapon, O.; Chitsobhuk, O. An FFT-based Technique and Best-first Search for Image Registration. In Proceedings of the ISCIT, Vientiane, Laos, 21–23 October 2008. [Google Scholar]
- Rezaei, H.; Karami, A. SAR image denoising using homomorphic and shearlet transforms. In Proceedings of the 3rd IPRIA, Shahrekord, Iran, 19–20 April 2017. [Google Scholar]
- Yommy, A.S.; Liu, R.; Wu, S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015. [Google Scholar]
- Di Martino, G.; Poderico, M.; Poggi, G.; Riccio, D.; Verdoliva, L. Benchmarking Framework for SAR Despeckling. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1596–1615. [Google Scholar] [CrossRef]
- Papadakis, N.; Provenzi, E.; Caselles, V. A Variation Model for Histogram Transfer of Color Images. IEEE Trans. Image Process. 2010, 20, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; An, D.; Huang, X. Moving Target Shadow Detection and Global Background Reconstruction for VideoSAR Based on Single-Frame Imagery. IEEE Access 2019, 7, 42418–42425. [Google Scholar] [CrossRef]
Complex Addition | Complex Multiplication | Total | |
---|---|---|---|
Lee Filter | |||
NSST |
Time (s) | EPI | MSE | |
---|---|---|---|
Lee Filter | 48.96 | 0.24 | 55.42 |
NSST | 3.70 | 0.52 | 40.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; An, D.; Wang, W.; Chen, L.; Feng, D.; Zhou, Z. A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR. Remote Sens. 2021, 13, 3706. https://doi.org/10.3390/rs13183706
Chen J, An D, Wang W, Chen L, Feng D, Zhou Z. A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR. Remote Sensing. 2021; 13(18):3706. https://doi.org/10.3390/rs13183706
Chicago/Turabian StyleChen, Jingwei, Daoxiang An, Wu Wang, Leping Chen, Dong Feng, and Zhimin Zhou. 2021. "A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR" Remote Sensing 13, no. 18: 3706. https://doi.org/10.3390/rs13183706
APA StyleChen, J., An, D., Wang, W., Chen, L., Feng, D., & Zhou, Z. (2021). A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR. Remote Sensing, 13(18), 3706. https://doi.org/10.3390/rs13183706