LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames
<p>The current LiDAR frame (shown in (<b>a</b>)) only contains 28,894 non-ground points that are considered sparse. By assembling consecutive frames together, a denser representation can be obtained, as shown in (<b>b</b>). However, moving objects (highlighted as red points in (<b>c</b>)) leave “ghost” tracks in the assembled frame. Using the method proposed in this paper, these “ghost” tracks are successfully removed while the static environment is safely enriched, as shown in (<b>d</b>). The method proposed in [<a href="#B13-remotesensing-13-03640" class="html-bibr">13</a>] is utilized for ground/non-ground classification. The estimated ground surface is shown as gray points, while non-ground points are colored by height.</p> "> Figure 2
<p>For the current frame <math display="inline"><semantics> <msub> <mi>F</mi> <mi>i</mi> </msub> </semantics></math>, its temporal adjacent frames <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <mi>k</mi> </mrow> </msub> <mo>}</mo> </mrow> </semantics></math> is defined as the collection of frames that are temporal close to the current frame. Its spatial adjacent frame is defined as the frames that is spatially close to the current frame, and the distance between any two frames is greater than a distance threshold <math display="inline"><semantics> <mi>τ</mi> </semantics></math>, i.e., <math display="inline"><semantics> <mrow> <mo>{</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> </mrow> </msub> <mo>|</mo> <mi>d</mi> <mi>i</mi> <mi>s</mi> <mi>t</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <msub> <mi>t</mi> <mi>m</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>−</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> <mo>></mo> <mi>τ</mi> <mo>}</mo> </mrow> </semantics></math>.</p> "> Figure 3
<p>An illustrative example showing a SDV (red car) equipped with LiDAR observing an oncoming truck at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The two cars stopped at an intersection and wait for the green light from <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Due to relative pose error and the range image quantization error, the current observed point <math display="inline"><semantics> <mrow> <msup> <mrow/> <mi>A</mi> </msup> <mspace width="-0.166667em"/> <msub> <mi>p</mi> <mi>i</mi> </msub> </mrow> </semantics></math> should not merely be compared with <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>, but also a small area around <math display="inline"><semantics> <mrow> <mo>[</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </semantics></math> in the range image. Subfigure (<b>a</b>) shows the comparing order between the current observed point and the small area in the reference frame, while subfigure (<b>b</b>) shows an illustrative example.</p> "> Figure 5
<p>Two possible explanations for Case 3. In Scenario 1, the object in front of the SDV (shown as the red car) is indeed a moving object that moves from A (<math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) to B (<math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>). In Scenario 2, the object ahead moves from A (<math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) to C (<math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>), and the object at location B is a stationary object.</p> "> Figure 6
<p>The current frame is compared with each of the five frames in the TAF set and SAF set, respectively. Points that are classified as Case 2 are considered as potential moving points. The 10 comparison results are then fused using a simple counting mechanism.</p> "> Figure 7
<p>The image on the <b>left</b> shows the superposition of the current frame and reference frame (a frame in the SAF set). The image on the <b>right</b> shows the classification result obtained by comparing the current frame with the reference frame. It can be seen that the moving vehicle A in front of the SDV is classified as Case 3, and the vehicle B behind the SDV is classified as Case 2.</p> "> Figure 8
<p>The current observed points, the enriched points classified as Case 1 or Case 3 are colored with red, blue, and green, respectively, in (<b>a</b>,<b>b</b>). For the four vehicles enclosed by the yellow ellipse, they are difficult to identify in (<b>c</b>) due to the sparse observations from a single LiDAR frame. In contrast, from the enriched frame shown in (<b>d</b>), these four vehicles are easily recognized.</p> "> Figure 9
<p>The preservation rate and rejection rate calculated for each of the 1100 frames in Semantic KITTI sequence 07 dataset.</p> "> Figure 10
<p>The two moving vehicles (outlined by the yellow ellipse) shown in the left figure have been correctly identified as moving objects. Therefore, the rejection rate is as high as 99.5%. The vehicle shown in the right figure has not been identified as moving object, hence results in a low rejection rate of 73.2%.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Related Works on LiDAR Super-Resolution
2.2. Related Works on Moving Objects Identification
3. Methodology
3.1. Spatial Adjacent Frames and Temporal Adjacent Frames
3.2. Moving Point Identification Based on Range Image Comparison
- Case 1: There exist some in satisfying , where is a positive value.
- Case 2: All are less than .
- Case 3: All are greater than .
- Case 4: Some are greater than , whilst others are less than .
- Case 5: None of the values in are valid. This is caused by the blank area in the range image, which may be caused by the absorption of target objects, or an ignored uncertain range measurement [24].
3.3. LiDAR Data Enrichment Based on Spatial Adjacent Frames
Algorithm 1 LiDAR data enrichment using SAF and TAF |
|
4. Experimental Results
4.1. Experimental Setup
4.2. Experiments on Moving Point Identification
4.3. Experiments on LiDAR Data Enrichment
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wu, T.; Fu, H.; Liu, B.; Xue, H.; Ren, R.; Tu, Z. Detailed analysis on generating the range image for lidar point cloud processing. Electronics 2021, 10, 1224. [Google Scholar] [CrossRef]
- Bosse, M.; Zlot, R.; Flick, P. Zebedee Design of a Spring-Mounted 3-D Range. IEEE Trans. Robot. 2012, 28, 1–15. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F. Loam livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020. [Google Scholar]
- Uhrig, J.; Schneider, N.; Schneider, L.; Franke, U.; Brox, T.; Geiger, A. Sparsity invariant CNNs. In Proceedings of the International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017. [Google Scholar]
- Ku, J.; Harakeh, A.; Waslander, S.L. In Defense of Classical Image Processing: Fast Depth Completion on the CPU. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 16–22. [Google Scholar] [CrossRef]
- Gu, J.; Xiang, Z.; Ye, Y.; Wang, L. DenseLiDAR: A Real-Time Pseudo Dense Depth Guided Depth Completion Network. IEEE Robot. Autom. Lett. 2021, 6, 1808–1815. [Google Scholar] [CrossRef]
- Shan, T.; Wang, J.; Chen, F.; Szenher, P.; Englot, B. Simulation-based Lidar Super-resolution for Ground Vehicles. Robot. Auton. Syst. 2020, 134, 103647. [Google Scholar] [CrossRef]
- Yue, J.; Wen, W.; Han, J.; Hsu, L.T. 3D Point Clouds Data Super Resolution Aided LiDAR Odometry for Vehicular Positioning in Urban Canyons. IEEE Trans. Veh. Technol. 2021, 70, 4098–4112. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Remove, then Revert: Static Point cloud Map Construction using Multiresolution Range Images. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020. [Google Scholar] [CrossRef]
- Pagad, S.; Agarwal, D.; Narayanan, S.; Rangan, K.; Kim, H.; Yalla, G. Robust Method for Removing Dynamic Objects from Point Clouds. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France, 31 May–30 June 2020; pp. 10765–10771. [Google Scholar] [CrossRef]
- Lim, H.; Hwang, S.; Myung, H. ERASOR: Egocentric Ratio of Pseudo Occupancy-Based Dynamic Object Removal for Static 3D Point Cloud Map Building. IEEE Robot. Autom. Lett. 2021, 6, 2272–2279. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Fu, H.; Ruike, R.; Jintao, Z.; Bokai, L.; Yiming, F.; Bin, D. LiDAR-based Drivable Region Detection for Autonomous Driving. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 1 March 2021. [Google Scholar]
- Yang, Q.; Yang, R.; Davis, J.; Nist, D. Spatial-Depth Super Resolution for Range Images. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Chen, Y.; Yang, B.; Liang, M.; Urtasun, R. Learning joint 2D-3D representations for depth completion. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 10022–10031. [Google Scholar] [CrossRef]
- Badino, H.; Huber, D.; Park, Y.; Kanade, T. Fast and accurate computation of surface normals from range images. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3084–3091. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, L.; Zhang, Z.; Huang, X. A Surface Geometry Model for LiDAR Depth Completion. IEEE Robot. Autom. Lett. 2021, 6, 4457–4464. [Google Scholar] [CrossRef]
- Yoon, D.; Tang, T.; Barfoot, T. Mapless online detection of dynamic objects in 3D lidar. In Proceedings of the 2019 16th Conference on Computer and Robot Vision, CRV, Kingston, QC, Canad, 29–31 May 2019; pp. 113–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, S.; Mersch, B.; Wiesmann, L.; Gall, J.; Behley, J.; Stachniss, C. Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data. IEEE Robot. Autom. Lett. 2021, 1–8. [Google Scholar] [CrossRef]
- Behley, J.; Garbade, M.; Milioto, A.; Behnke, S.; Stachniss, C.; Gall, J.; Quenzel, J. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea, 27 October–3 November 2019. [Google Scholar]
- Luo, W.; Yang, B.; Urtasun, R. Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–22 June 2018; pp. 3569–3577. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Robotics: Science and Systems; 2014; pp. 1–8. Available online: https://www.ri.cmu.edu/pub_files/2014/7/Ji_LidarMapping_RSS2014_v8.pdf (accessed on 8 September 2021).
- Pomerleau, F.; Krüsi, P.; Colas, F.; Furgale, P.; Siegwart, R. Long-term 3D map maintenance in dynamic environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 3712–3719. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Xue, H.; Ren, R. Fast Implementation of 3D Occupancy Grid for Autonomous Driving. In Proceedings of the 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics, IHMSC 2020, Hangzhou, China, 22–23 August 2020; Volume 2, pp. 217–220. [Google Scholar] [CrossRef]
- Wurm, K.M.; Hornung, A.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems. In Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, 3–8 May 2010. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Paudel, D.P.; Fofi, D.; Fougerolle, Y.; Demonceaux, C. Moving Object Detection by 3D Flow Field Analysis. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1950–1963. [Google Scholar] [CrossRef]
- Zermas, D.; Izzat, I.; Papanikolopoulos, N. Fast segmentation of 3D point clouds: A paradigm on LiDAR data for autonomous vehicle applications. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 5067–5073. [Google Scholar] [CrossRef]
- Thrun, S. Learning Occupancy Grid Maps With Forward Sensor Models. Auton. Robot. 2003, 15, 111–127. [Google Scholar] [CrossRef]
- Petrovskaya, A.; Thrun, S. Model based vehicle tracking for autonomous driving in urban environments. Robot. Sci. Syst. 2009, 4, 175–182. [Google Scholar] [CrossRef]
- Schauer, J.; Nuchter, A. The Peopleremover-Removing Dynamic Objects from 3-D Point Cloud Data by Traversing a Voxel Occupancy Grid. IEEE Robot. Autom. Lett. 2018, 3, 1679–1686. [Google Scholar] [CrossRef]
- Wirges, S.; Yang, Y.; Richter, S.; Hu, H.; Stiller, C. Learned Enrichment of Top-View Grid Maps Improves Object Detection. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece, 20–23 September 2020. [Google Scholar] [CrossRef]
- Rist, C.; Emmerichs, D.; Enzweiler, M.; Gavrila, D. Semantic Scene Completion using Local Deep Implicit Functions on LiDAR Data. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Xue, H.; Hu, X.; Liu, B. LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames. Remote Sens. 2021, 13, 3640. https://doi.org/10.3390/rs13183640
Fu H, Xue H, Hu X, Liu B. LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames. Remote Sensing. 2021; 13(18):3640. https://doi.org/10.3390/rs13183640
Chicago/Turabian StyleFu, Hao, Hanzhang Xue, Xiaochang Hu, and Bokai Liu. 2021. "LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames" Remote Sensing 13, no. 18: 3640. https://doi.org/10.3390/rs13183640
APA StyleFu, H., Xue, H., Hu, X., & Liu, B. (2021). LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames. Remote Sensing, 13(18), 3640. https://doi.org/10.3390/rs13183640