Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation
"> Figure 1
<p>Daily average temperature (<b>a</b>), precipitation (<b>b</b>), average humidity (<b>c</b>), and average wind speed (<b>d</b>) during the rice growth seasons in different years.</p> "> Figure 2
<p>Workflow of the methodology used here to identify optimal remote sensing models for predicting rice PKC. Note: R = reflectance, FD = first derivative spectra, LOG = reciprocal logarithm-transformed spectra, NDSI = normalized difference spectral index, PLSR = partial least-squares regression, RF = random forest, GDD = growing degree day, and GA-PLS = genetic algorithms partial least-squares.</p> "> Figure 3
<p>The variations pattern of rice plant potassium content (PKC) (N1 (<b>a</b>), N2 (<b>b</b>)) and normalized difference spectral index (NDSI) based on reflectance spectra (R) (<b>d</b>), first derivative spectra (FD) (<b>e</b>), and reciprocal logarithm-transformed spectra (log (1/R)) (<b>f</b>), respectively, with different accumulated growing degree day (AGDD). Mean reflectance for selected V1N2K2 treatment with several growth stages (<b>c</b>). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Note: Data of all figures used here were in 2017. V1 = japonica (Wuyunjing 27), N1 = 100 kg∙ha<sup>−1</sup>, N2 = 300 kg∙ha<sup>−1</sup>.</p> "> Figure 4
<p>The correlation between rice plant potassium content (PKC) (<b>a</b>), reflectance spectra (R), first derivative spectra (FD), and reciprocal logarithm-transformed spectra (log (1/R)). Dotted horizontal lines illustrate significance level (<span class="html-italic">p</span> value < 0.001). Standardized slope (<b>b*</b>) estimates for meteorological factors of the linear mixed effects model with PKC as the dependent variable and the following fixed effects: daily average temperature, average wind, and humidity. The symbol of *** represents statistical significance levels (<span class="html-italic">p</span> < 0.001) (<b>b</b>). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).</p> "> Figure 5
<p>Important bands (IBs) selection based on reflectance spectra (R-IBs) (<b>a</b>), first derivative spectra (FD) (<b>b</b>), and reciprocal logarithm-transformed spectra (LOG) (<b>c</b>) using the genetic algorithms partial least-squares (GA-PLS). Some IBs and their corresponding absorption features [<a href="#B59-remotesensing-13-03502" class="html-bibr">59</a>,<a href="#B60-remotesensing-13-03502" class="html-bibr">60</a>,<a href="#B61-remotesensing-13-03502" class="html-bibr">61</a>] (<b>d</b>).</p> "> Figure 6
<p>Contour maps of coefficients of determination (R<sup>2</sup>) for linear relationships between rice plant potassium content (PKC) and normalized spectral indices (NDSI) based on reflectance spectra (R) (<b>a</b>), first derivative spectra (FD) (<b>b</b>), and reciprocal logarithm-transformed spectra (log (1/R)) (<b>c</b>), respectively. Lambda (λ) represents a wavelength from 400 to 2400 nm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).</p> "> Figure 7
<p>Relationships between rice plant potassium content (PKC) and normalized spectral index (NDSI): NDSI (R<sub>1210</sub>, R<sub>1105</sub>) (<b>a</b>), NDSI (FD<sub>1505</sub>, FD<sub>805</sub>) (<b>b</b>), and NDSI (LOG<sub>1210</sub>, LOG<sub>1180</sub>) (<b>c</b>) using the calibration dataset. R, FD, and LOG represent reflectance, first derivative spectra, and reciprocal logarithm-transformed spectra, respectively.</p> "> Figure 8
<p>Relationships between the measured plant potassium content (PKC) and predicted PKC with the calibration dataset using partial least-squares regression (PLSR) based on important bands (IBs) of reflectance spectra (R-IBs) (<b>a</b>), IBs of first derivative spectra (FD-IBs) (<b>b</b>), IBs of reciprocal logarithm-transformed spectra (LOG-IBs) (<b>c</b>), R-IBs + important meteorological factors (IFs) including daily average temperature and humidity (IFs-Tem<sub>daily</sub>) (R-IBs + IFs-Tem<sub>daily</sub>) (<b>d</b>), FD-IBs + IFs-Tem<sub>daily</sub> (<b>e</b>), LOG-IBs + IFs-Tem<sub>daily</sub> (<b>f</b>), R-IBs + IFs including accumulated growing degree day (AGDD) and daily average humidity (IFs-AGDD) (R-IBs + IF-AGDD) (<b>g</b>), FD-IBs + IFs-AGDD (<b>h</b>), and LOG-IBs + IFs-AGDD (<b>i</b>).</p> "> Figure 9
<p>Relationships between the measured plant potassium content (PKC) and predicted PKC with the calibration dataset using random forest (RF) based on important bands (Ibs) of reflectance spectra (R-Ibs) (<b>a</b>), Ibs of first derivative spectra (FD-Ibs) (<b>b</b>), Ibs of reciprocal logarithm-transformed spectra (LOG-Ibs) (<b>c</b>), R-Ibs + important meteorological factors (Ifs) including daily average temperature and humidity (Ifs-Tem<sub>daily</sub>) (R-Ibs + Ifs-Tem<sub>daily</sub>) (<b>d</b>), FD-Ibs + Ifs-Tem<sub>daily</sub> (<b>e</b>), LOG-IBs + IFs-Tem<sub>daily</sub> (<b>f</b>), R-IBs + IFs including accumulated growing degree day (AGDD) and daily average humidity (IFs-AGDD) (R-IBs + IF-AGDD) (<b>g</b>), FD-IBs + IFs-AGDD (<b>h</b>), and LOG-IBs + IFs-AGDD (<b>i</b>).</p> "> Figure 10
<p>Relative variable importance analysis based on important bands (<a href="#remotesensing-13-03502-t004" class="html-table">Table 4</a>) for reflectance spectra (<b>a</b>), first derivative spectra (<b>b</b>), and reciprocal logarithm-transformed spectra (<b>c</b>). We used the importance function in the “RandomForest” package to perform this analysis. The %IncMSE represents the percent increase in mean squared error.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Acquisition of Canopy Reflectance and Agronomic Parameters
2.3. Meteorological Data Collection and Analysis
2.4. Modeling and Validation of Potassium Nutrition
3. Results
3.1. Variation Patterns of Rice PKC and Canopy Spectral Parameters
3.2. Correlation of Rice PKC with Spectral and Meteorological Data
3.3. Important Bands Selection
3.4. Estimation of Rice PKC with Spectral Index and Machine Learning Methods
3.5. Estimation of Rice PKC with a Combination of Remote Sensing and Meteorological Data
3.6. Model Evaluation and Testing
4. Discussion
4.1. Canopy Sensitive Bands and Transformed Spectra for Plant K Estimation
4.2. Performance of Spectral Index and Machine Learning for Estimating Plant K
4.3. Incorporating Remote Sensing and Meteorological Data for Plant K Estimation
4.4. Evaluation of K Models and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Chen, Q.; He, A.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Res. 2018, 223, 164–170. [Google Scholar] [CrossRef]
- Lu, D.; Li, C.; Sokolwski, E.; Magen, H.; Chen, X.; Wang, H.; Zhou, J. Crop yield and soil available potassium changes as affected by potassium rate in rice-wheat systems. Field Crops Res. 2017, 214, 38–44. [Google Scholar] [CrossRef]
- Ma, Q.; Bell, R.; Biddulph, B. Potassium application alleviates grain sterility and increases yield of wheat (Triticum aestivum) in frost-prone Mediterranean-type climate. Plant Soil 2018, 434, 203–216. [Google Scholar] [CrossRef]
- Zhan, A.; Zou, C.; Ye, Y.; Liu, Z.; Cui, Z.; Chen, X. Estimating on-farm wheat yield response to potassium and potassium uptake requirement in China. Field Crops Res. 2016, 191, 13–19. [Google Scholar] [CrossRef]
- Council, N.R. Soil and Water Quality: An Agenda for Agriculture; The National Academies Press: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Tiwari, K.N.; Majumdar, K.; Rani, M.; Singh, S.K.; Timsina, J. Optimizing nutrient management strategies for rice-wheat system in the Indo-Gangetic Plains of India and adjacent region for higher productivity, nutrient use efficiency and profits. Field Crops Res. 2014, 164, 30–44. [Google Scholar] [CrossRef]
- Singh, V.K.; Dwivedi, B.S.; Yadvinder, S.; Singh, S.K.; Mishra, R.P.; Shukla, A.K.; Rathore, S.S.; Shekhawat, K.; Majumdar, K.; Jat, M.L. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crops Res. 2018, 224, 1–12. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Yang, T.; Lu, J.; Liao, F.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Retrieving potassium levels in wheat blades using normalised spectra. Int. J. Appl. Earth Obs. 2021, 102, 102412. [Google Scholar] [CrossRef]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [Green Version]
- 1Albayrak, S. Use of reflectance measurements for the detection of N, P, K, ADF and NDF contents in sainfoin pasture. Sensors 2008, 8, 7275–7286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Li, D.; Wang, Y.; Peng, Z.; Chen, W. Spectral characterization and prediction of nutrient content in winter leaves of litchi during flower bud differentiation in southern China. Precis. Agric. 2011, 12, 682–698. [Google Scholar] [CrossRef]
- Kawamura, K.; Mackay, A.D.; Tuohy, M.P.; Betteridge, K.; Sanches, I.D.; Inoue, Y. Potential for spectral indices to remotely sense phosphorus and potassium content of legume-based pasture as a means of assessing soil phosphorus and potassium fertility status. Int. J. Remote Sens. 2011, 32, 103–124. [Google Scholar] [CrossRef]
- Pimstein, A.; Karnieli, A.; Bansal, S.K.; Bonfil, D.J. Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Res. 2011, 121, 125–135. [Google Scholar] [CrossRef]
- Ferwerda, J.G.; Skidmore, A.K. Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS J. Photogramm. Remote Sens. 2007, 62, 406–414. [Google Scholar] [CrossRef]
- Özyi̇ğit, Y.; Bi̇Lgen, M. Use of spectral reflectance values for determining nitrogen, phosphorus, and potassium contents of rangeland plants. J. Agric. Sci. Technol. 2013, 15, 1537–1545. Available online: http://journals.modares.ac.ir/article-23-5138-en.html.
- Huang, C.; Han, L.; Yang, Z.; Liu, X. Exploring the use of near infrared reflectance spectroscopy to predict minerals in straw. Fuel 2009, 88, 163–168. [Google Scholar] [CrossRef]
- Lu, J.; Li, W.; Yu, M.; Zhang, X.; Ma, Y.; Su, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; et al. Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precis. Agric. 2021, 22, 51–74. [Google Scholar] [CrossRef]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanches, I.D.; Tuohy, M.P.; Hedley, M.J.; Mackay, A.D. Seasonal prediction of in situ pasture macronutrients in New Zealand pastoral systems using hyperspectral data. Int. J. Remote Sens. 2013, 34, 276–302. [Google Scholar] [CrossRef]
- Stein, B.R.; Thomas, V.A.; Lorentz, L.J.; Strahm, B.D. Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales. GISci. Remote Sens. 2014, 51, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F. On spectral estimates of fresh leaf biochemistry. Int. J. Remote Sens. 1998, 19, 1283–1297. [Google Scholar] [CrossRef]
- Lacapra, V.C.; Melack, J.M.; Gastil, M.; Valeriano, D. Remote sensing of foliar chemistry of inundated rice with imaging spectrometry. Remote Sens. Environ. 1996, 55, 50–58. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; de Sousa Mendes, W.; Demattê, J. Estimation of effective calibration sample size using visible near infrared spectroscopy: Deep learning vs machine learning. Soil Discuss. 2019, 48, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Wadoux, A.M.J.C.; Padarian, J.; Minasny, B. Multi-source data integration for soil mapping using deep learning. Soil 2019, 5, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Zeraatpisheh, M.; Jafari, A.; Bagheri Bodaghabadi, M.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Toomanian, N.; Kerry, R.; Xu, M. Conventional and digital soil mapping in Iran: Past, present, and future. Catena 2020, 188, 104424. [Google Scholar] [CrossRef]
- Houssaine Bouras, E.; Jarlan, L.; Er-Raki, S.; Balaghi, R.; Amazirh, A.; Richard, B.; Khabba, S. Cereal yield forecasting with satellite drought-based indices, weather data and regional climate indices using machine learning in Morocco. Remote Sens. 2021, 13, 3101. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 2019, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Hassanzadeh, A.; Zhang, F.; van Aardt, J.; Murphy, S.P.; Pethybridge, S.J. Broadacre crop yield estimation using imaging spectroscopy from unmanned aerial systems (UAS): A field-based case study with snap bean. Remote Sens. 2021, 13, 3241. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-Ui-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A random forest machine learning approach for the retrieval of leaf chlorophyll content in wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Li, P.; Han, X.; Norton, R.M.; Lam, S.K.; Zong, Y.; Sun, M.; Lin, E.; Gao, Z. Effects of free-air CO2 enrichment (FACE) on N, P and K uptake of soybean in northern China. Agric. For. Meteorol. 2016, 218–219, 261–266. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Lam, S.K.; Zhang, X.; Liu, X.; Pan, G. Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field. Agric. For. Meteorol. 2018, 250–251, 202–208. [Google Scholar] [CrossRef]
- Yin, Y.; Ying, H.; Zheng, H.; Zhang, Q.; Xue, Y.; Cui, Z. Estimation of NPK requirements for rice production in diverse Chinese environments under optimal fertilization rates. Agric. For. Meteorol. 2019, 279, 107756. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Garcia-Sanchez, F.; Perez-Perez, J.G.; Colmenero-Flores, J.M.; Rubio, F.; Rosales, M.A. Coping with water shortage: An update on the role of K+, Cl−, and water membrane transport mechanisms on drought resistance. Front. Plant Sci. 2019, 10, 1619. [Google Scholar] [CrossRef]
- Ahmad, I.; Maathuis, F.J. Cellular and tissue distribution of potassium: Physiological relevance, mechanisms and regulation. J. Plant Physiol. 2014, 171, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Brag, H. The influence of potassium on transpiration rate and stomatal opening in Triticum aestivum and Pisum sativum. Physiol. Plant. 1972, 26, 250–257. [Google Scholar] [CrossRef]
- Pandey, R. Mineral nutrition of plants. In Plant Biology and Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; pp. 499–538. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Gao, J.; Meng, B.; Liang, T.; Feng, Q.; Ge, J.; Yin, J.; Wu, C.; Cui, X.; Hou, M.; Liu, J.; et al. Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau, China. ISPRS J. Photogramm. Remote Sens. 2019, 147, 104–117. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkönig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens. 2013, 82, 27–40. [Google Scholar] [CrossRef]
- Baker, J.T.; Allen, L.H., Jr.; Boote, K.J. Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot. 1992, 43, 959–964. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Leardi, R.; Boggia, R.; Terrile, M. Genetic Algorithms as a strategyfor feature selection. J. Chemometr. 1992, 6, 267–281. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemometr. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Mevik, B.-H.; Wehrens, R. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Im, J.; Park, S.; Quackenbush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE T. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Kokaly, R.F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ. 2001, 75, 153–161. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M.; Odindi, J. Exploring the potential of in situ hyperspectral data and multivariate techniques in discriminating different fertilizer treatments in grasslands. J. Appl. Remote Sens. 2015, 9, 096033. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Li, L. Feasibility of estimating leaf water content using spectral indices from WorldView-3’s near-infrared and shortwave infrared bands. Int. J. Remote Sens. 2015, 37, 388–402. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens. Environ. 2011, 115, 659–670. [Google Scholar] [CrossRef]
- Chadwick, K.; Asner, G. Organismic-scale remote sensing of canopy foliar traits in lowland tropical forests. Remote Sens. 2016, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chlus, A.; Geygan, R.; Ye, Z.; Zheng, T.; Singh, A.; Couture, J.J.; Cavender-Bares, J.; Kruger, E.L.; Townsend, P.A. Foliar functional traits from imaging spectroscopy across biomes in eastern North America. New Phytol. 2020, 228, 494–511. [Google Scholar] [CrossRef]
- Gisleröd, H.R.; Selmer-Olsen, A.R.; Mortensen, L.M. The effect of air humidity on nutrient uptake of some greenhouse plants. Plant Soil 1987, 102, 193–196. [Google Scholar] [CrossRef]
- Ashima, S.G.; Gerald, A.B.; Paul, A.P. Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiol. 1989, 89, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- McMaster, G.S.; Smika, D.E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric. For. Meteorol. 1988, 43, 1–18. [Google Scholar] [CrossRef]
- Alganci, U.; Ozdogan, M.; Sertel, E.; Ormeci, C. Estimating maize and cotton yield in southeastern Turkey with integrated use of satellite images, meteorological data and digital photographs. Field Crops Res. 2014, 157, 8–19. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plan Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pey, J.; Larrasoana, J.C.; Perez, N.; Cerro, J.C.; Castillo, S.; Tobar, M.L.; de Vergara, A.; Vazquez, I.; Reyes, J.; Mata, M.P.; et al. Phenomenology and geographical gradients of atmospheric deposition in southwestern Europe: Results from a multi-site monitoring network. Sci. Total Environ. 2020, 744, 140745. [Google Scholar] [CrossRef] [PubMed]
References | Species | Spectral Range | Related to | Method | Accuracy (RMSE, %) |
---|---|---|---|---|---|
[16] | Mopane (Cholophospermum mopane) Olive (Olea europaea L.) Willow (Salix cinera L.) Heather (Calluna vulgaris L.) | 350–2490 nm | LKC | SMLR (R) SMLR (FD) | 0.134 0.117 |
[12] | Graminoids | 450–900 nm | PKC | R780/R650, FD760/FD630 SMLR (R/FD) | 0.232/0.208 0.251/0.219 |
[18] | Rice (Oryza sativa L.) Wheat (Triticum aestivum L.) | 1100–2500 nm | SKC | PLSR (Log (1/R)) | 0.235 |
[14] | Graminoids | 350–2500 nm | PKC | NDSI (R523, R583) | 0.450 |
[15] | Wheat (Triticum aestivum L.) | 350–2500 nm | PKC | NDSI (R1645, R1715) NDSI (R870, R1450) PLSR (R) | 0.194 0.222 0.197 |
[13] | Litchi (Litchi chinensis Sonn.) | 350–2500 nm | LKC | FD1686, Log(1/R1337) | 0.0024/0.0022 |
[21] | Graminoids | 420–2400 nm | PKC | PLSR (R/FD/(Log (1/R)) | 0.490/0.500/0.530 |
[17] | Graminoids | 325–1075 nm | PKC | SMLR (R) | 0.055 |
[22] | Loblolly pine (Pinus taeda L.) | 350–2500 nm | LKC | PLSR (R/FD) | 0.130/0.110 |
[20] | Maize (Zea mays L.) soybean (Glycine max L.) | 550–1700 nm | LKC | PLSR (R) | 0.41 |
[11] | Maize (Zea mays L.) | 400–2500 nm | LKC | PLSR (R) | 0.301 |
[9] | Rice (Oryza sativa L.) | 350–2500 nm | LKC | NDSI (R1705, 1385) NDSI (FD1430, 1295) | 0.173 0.151 |
Dataset | Number of Samples | Min | Max | Mean | STD | CV (%) | |
---|---|---|---|---|---|---|---|
PKC (%) | 2017 | 288 | 0.82 | 3.76 | 2.22 | 0.60 | 26.94 |
2018 | 288 | 0.86 | 4.17 | 2.36 | 0.67 | 28.48 | |
2019 | 288 | 0.55 | 3.52 | 2.16 | 0.74 | 34.49 | |
Calibration dataset | 576 | 0.55 | 4.17 | 2.25 | 0.68 | 30.20 | |
Validation dataset | 288 | 0.55 | 4.00 | 2.24 | 0.68 | 30.32 | |
All | 864 | 0.55 | 4.17 | 2.25 | 0.68 | 30.22 |
Variables and Intercept | Value | R2 adj | p-Value | TOL | VIF |
---|---|---|---|---|---|
Intercept | −1.883 | 0.57 | <0.001 | ||
Daily average temperature | 0.221 | <0.001 | 0.878 | 1.139 | |
Daily average humidity | −0.031 | <0.001 | 0.882 | 1.134 | |
Daily average wind | 0.170 | <0.001 | 0.967 | 1.034 |
Variables | CBs | Numbers of CBs | IBs | Numbers of IBs |
---|---|---|---|---|
R | 400–723; 750–955; 1008–1130; 1441–1800; 1961–2400 nm | 1453 | 421; 425; 427–428; 698; 701–704; 707; 759; 1050–1062; 1081; 1122–1123; 1577–1582; 1586–1587; 1607; 1962; 2373; 2380; 2391 nm | 40 |
FD | 400–420 … 713–715; 717–757; 759–810; 920–973…… 985–1066; 1077–1264; 1268–1341 … 1465–1473; 1477–1531; 1728–1730 … 1976–1978; 2014–2018; 2027–2033 … 2071–2078; 2090–2095; 2281–2284 nm | 918 | 401; 403; 406; 412; 466; 602–603; 639; 762; 795; 799; 802; 804–805; 841; 845; 849–850; 947; 999; 1185–1186; 1190; 1192; 1194; 1269; 1469; 1481; 1483; 1485; 1497–1498; 1500; 1506–1507; 1662; 1728; 1767–1768; 1789; 1977–1978; 1982; 1988; 2005; 2014; 2016; 2029; 2050; 2057; 2091–2092; 2109; 2121; 2124; 2165; 2284 nm | 57 |
Log (1/R) | 400–724; 747–957; 1004–1130; 1441–1800; 1961–2400 nm | 1463 | 427–429; 538–541; 689–691; 1101–1107; 1122–1123; 1579–1580; 1963; 1969; 1995; 2129–2130; 2346; 2372; 2374; 2380 nm | 30 |
Spectral Indices | Calibration | Validation | |||
---|---|---|---|---|---|
R2 | R2 | RMSE (%) | RE (%) | Bias (%) | |
NDSI (FD1505, FD805) * | 0.58 | 0.53 | 0.47 | 20.70 | 0.008 |
NDSI (R1210, R1105) * | 0.51 | 0.47 | 0.49 | 22.00 | 0.011 |
NDSI(LOG1210, LOG1180) * | 0.44 | 0.44 | 0.51 | 22.72 | 0.007 |
NDSI (R1645, R1715) | 0.39 | 0.35 | 0.55 | 24.45 | 0.018 |
NDSI (R1705, R1320) | 0.32 | 0.29 | 0.57 | 25.49 | 0.011 |
NDSI (R870, R1450) | 0.21 | 0.15 | 0.63 | 27.90 | 0.014 |
NDSI (R523, R583) | 0.01 | 0.02 | 0.67 | 29.97 | 0.010 |
FD1686 | 0.03 | 0.01 | 0.68 | 30.43 | 0.008 |
R780/R650 | 0.02 | 0.00 | 0.68 | 30.24 | 0.007 |
Log(1/R1337) | 0.01 | 0.01 | 0.68 | 30.14 | 0.010 |
NDSI (FD1450, FD1295) | 0.02 | 0.05 | 0.69 | 30.97 | 0.001 |
FD760/FD630 | 0.01 | 0.12 | 0.72 | 32.04 | 0.024 |
Transformed Spectra | Variables and Intercept | Value | R2 adj | p-Value | TOL | VIF |
---|---|---|---|---|---|---|
R | Intercept | −1.194 | 0.60 | <0.001 | ||
NDSI (R1210, R1105) | 0.145 | <0.001 | 0.441 | 2.269 | ||
Average temperature | 5.413 | <0.001 | 0.441 | 2.269 | ||
FD | Intercept | −1.811 | 0.64 | <0.001 | ||
NDSI (FD1505, FD805) | 1.606 | <0.001 | 0.441 | 2.268 | ||
Average temperature | 0.118 | <0.001 | 0.441 | 2.268 | ||
LOG | Intercept | −1.638 | 0.58 | <0.001 | ||
NDSI (LOG1210, LOG1180) | 0.217 | <0.001 | 0.890 | 1.124 | ||
Average temperature | −0.028 | <0.001 | 0.890 | 1.124 | ||
R | Intercept | 3.991 | 0.65 | <0.001 | ||
AGDD | −0.002 | <0.001 | 0.335 | 2.988 | ||
NDSI (R1210, R1105) | 2.152 | <0.001 | 0.335 | 2.988 | ||
FD | Intercept | 2.927 | 0.68 | <0.001 | ||
AGDD | −0.001 | <0.001 | 0.37 | 2.704 | ||
NDSI (FD1505, FD805) | 1.117 | <0.001 | 0.37 | 2.704 | ||
LOG | Intercept | 4.736 | 0.64 | <0.001 | ||
AGDD | −0.002 | <0.001 | 0.347 | 2.879 | ||
Humidity | −0.012 | <0.001 | 0.826 | 1.211 | ||
NDSI (LOG1210, LOG1180) | −31.414 | <0.001 | 0.374 | 2.675 |
Type of Modeling | Methods | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | R2 | RMSE (%) | RE (%) | Bias (%) | AIC | ||
LR (Section 3.4) | NDSI (R1210, R1105) | 0.51 | 0.47 | 0.49 | 22.00 | 0.011 | −401 |
SMLR (Section 3.5) | NDSI(R1210,R1105) + Temdaily | 0.60 | 0.55 | 0.45 | 20.20 | 0.002 | −447 |
SMLR (Section 3.5) | NDSI (R1210, R1105) + AGDD | 0.65 | 0.61 | 0.42 | 18.92 | −0.004 | −486 |
LR (Section 3.4) | NDSI(FD1505, FD805) | 0.58 | 0.53 | 0.47 | 20.70 | 0.008 | −436 |
SMLR (Section 3.5) | NDSI (FD1505, FD805) + Temdaily | 0.64 | 0.59 | 0.43 | 19.30 | 0.002 | −475 |
SMLR (Section 3.5) | NDSI(FD1505, FD805) +AGDD | 0.68 | 0.63 | 0.41 | 18.36 | 0.001 | −504 |
LR (Section 3.4) | NDSI(LOG1210, LOG1180) | 0.44 | 0.44 | 0.51 | 22.72 | 0.007 | −383 |
SMLR (Section 3.5) | NDSI(LOG1210, LOG1180) + Temdaily | 0.58 | 0.55 | 0.46 | 20.32 | 0.008 | −445 |
SMLR (Section 3.5) | NDSI(LOG1210, LOG1180) +AGDD | 0.64 | 0.62 | 0.42 | 18.78 | −0.001 | −491 |
PLSR (Section 3.4) | PLSR(R-IBs) | 0.67 | 0.64 | 0.41 | 18.14 | 0.007 | −438 |
PLSR (Section 3.5) | PLSR(R-IBs + IFs-Temdaily) | 0.70 | 0.67 | 0.39 | 17.50 | 0.009 | −455 |
PLSR (Section 3.5) | PLSR(R-IBs + IFs-AGDD) | 0.72 | 0.69 | 0.38 | 17.08 | −0.200 | −486 |
PLSR (Section 3.4) | PLSR(FD-IBs) | 0.69 | 0.71 | 0.37 | 16.56 | −0.012 | −485 |
PLSR (Section 3.5) | PLSR(FD-IBs + IFs-Temdaily) | 0.71 | 0.71 | 0.36 | 16.30 | −0.015 | −501 |
PLSR (Section 3.5) | PLSR(FD-IBs + IFs-AGDD) | 0.74 | 0.73 | 0.35 | 15.88 | 0.014 | −524 |
PLSR (Section 3.4) | PLSR(LOG-IBs) | 0.67 | 0.67 | 0.39 | 17.42 | −0.006 | −440 |
PLSR (Section 3.5) | PLSR(LOG-IBs + IFs-Temdaily) | 0.69 | 0.69 | 0.38 | 16.96 | −0.006 | −447 |
PLSR (Section 3.5) | PLSR(LOG-IBs + IFs-AGDD) | 0.72 | 0.70 | 0.37 | 16.54 | −0.015 | −455 |
RF (Section 3.4) | RF(R-IBs) | 0.62 | 0.56 | 0.47 | 21.26 | 0.160 | −347 |
RF (Section 3.5) | RF(R-IBs + IFs-Temdaily) | 0.67 | 0.63 | 0.45 | 20.24 | 0.180 | −371 |
RF (Section 3.5) | RF(R-IBs + IFs-AGDD) | 0.67 | 0.63 | 0.45 | 20.15 | 0.179 | −374 |
RF (Section 3.4) | RF(FD-IBs) | 0.71 | 0.70 | 0.40 | 17.96 | 0.130 | −445 |
RF (Section 3.5) | RF(FD-IBs + IFs-Temdaily) | 0.75 | 0.75 | 0.37 | 16.60 | 0.120 | −488 |
RF (Section 3.5) | RF(FD-IBs + IFs-AGDD) | 0.76 | 0.75 | 0.37 | 16.69 | 0.128 | −493 |
RF (Section 3.4) | RF(LOG-IBs) | 0.61 | 0.57 | 0.44 | 19.78 | 0.019 | −388 |
RF (Section 3.5) | RF(LOG-IBs + IFs-Temdaily) | 0.65 | 0.63 | 0.43 | 19.02 | 0.046 | −423 |
RF (Section 3.5) | RF(LOG-IBs + IFs-AGDD) | 0.68 | 0.66 | 0.40 | 18.06 | 0.039 | −432 |
Methods | Variety | Nitrogen | Potassium | Experiments (Exp.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Japonica | Indica | N1 | N2 | K0 | K1 | K2 | K3 | Exp.1 | Exp.2 | Exp.3 | ||
NDSI (R1210, R1105) | R2 | 0.51 | 0.53 | 0.59 | 0.46 | 0.64 | 0.65 | 0.56 | 0.65 | 0.44 | 0.57 | 0.46 |
RMSE (%) | 0.49 | 0.44 | 0.41 | 0.53 | 0.33 | 0.37 | 0.45 | 0.40 | 0.45 | 0.44 | 0.55 | |
NDSI (R1210, R1105) + AGDD | R2 | 0.67 | 0.55 | 0.68 | 0.61 | 0.69 | 0.78 | 0.72 | 0.78 | 0.61 | 0.68 | 0.72 |
RMSE (%) | 0.40 | 0.43 | 0.38 | 0.47 | 0.30 | 0.29 | 0.36 | 0.31 | 0.37 | 0.38 | 0.39 | |
NDSI (FD1505, FD805) | R2 | 0.57 | 0.56 | 0.60 | 0.55 | 0.64 | 0.71 | 0.55 | 0.68 | 0.43 | 0.58 | 0.66 |
RMSE (%) | 0.46 | 0.43 | 0.41 | 0.48 | 0.32 | 0.34 | 0.45 | 0.38 | 0.45 | 0.44 | 0.44 | |
NDSI (FD1505, FD805) +AGDD | R2 | 0.72 | 0.62 | 0.73 | 0.62 | 0.73 | 0.82 | 0.72 | 0.80 | 0.62 | 0.71 | 0.73 |
RMSE (%) | 0.38 | 0.40 | 0.33 | 0.44 | 0.28 | 0.27 | 0.36 | 0.30 | 0.37 | 0.36 | 0.39 | |
PLSR (FD-IBs) | R2 | 0.69 | 0.62 | 0.73 | 0.65 | 0.73 | 0.80 | 0.76 | 0.78 | 0.61 | 0.76 | 0.76 |
RMSE (%) | 0.39 | 0.40 | 0.36 | 0.42 | 0.28 | 0.29 | 0.34 | 0.31 | 0.37 | 0.33 | 0.36 | |
PLSR (FD-IBs + IFs-AGDD) | R2 | 0.71 | 0.70 | 0.80 | 0.65 | 0.76 | 0.83 | 0.79 | 0.82 | 0.63 | 0.76 | 0.78 |
RMSE (%) | 0.38 | 0.35 | 0.29 | 0.42 | 0.26 | 0.26 | 0.32 | 0.28 | 0.36 | 0.33 | 0.34 | |
RF (FD-IBs) | R2 | 0.74 | 0.62 | 0.75 | 0.69 | 0.79 | 0.82 | 0.74 | 0.81 | 0.64 | 0.75 | 0.78 |
RMSE (%) | 0.34 | 0.40 | 0.33 | 0.40 | 0.24 | 0.27 | 0.35 | 0.29 | 0.36 | 0.34 | 0.34 | |
RF (FD-IBs + IFs-AGDD) | R2 | 0.78 | 0.75 | 0.82 | 0.71 | 0.83 | 0.88 | 0.82 | 0.87 | 0.67 | 0.78 | 0.81 |
RMSE (%) | 0.33 | 0.33 | 0.27 | 0.39 | 0.22 | 0.22 | 0.30 | 0.24 | 0.34 | 0.32 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Eitel, J.U.H.; Jennewein, J.S.; Zhu, J.; Zheng, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation. Remote Sens. 2021, 13, 3502. https://doi.org/10.3390/rs13173502
Lu J, Eitel JUH, Jennewein JS, Zhu J, Zheng H, Yao X, Cheng T, Zhu Y, Cao W, Tian Y. Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation. Remote Sensing. 2021; 13(17):3502. https://doi.org/10.3390/rs13173502
Chicago/Turabian StyleLu, Jingshan, Jan U. H. Eitel, Jyoti S. Jennewein, Jie Zhu, Hengbiao Zheng, Xia Yao, Tao Cheng, Yan Zhu, Weixing Cao, and Yongchao Tian. 2021. "Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation" Remote Sensing 13, no. 17: 3502. https://doi.org/10.3390/rs13173502
APA StyleLu, J., Eitel, J. U. H., Jennewein, J. S., Zhu, J., Zheng, H., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2021). Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation. Remote Sensing, 13(17), 3502. https://doi.org/10.3390/rs13173502