Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction
<p>The distributions of the parking durations in two different areas (Mint and Queensberry) in Melbourne in July 2017.</p> "> Figure 2
<p>The distributions of the parking durations in the Queensberry area in Melbourne in each month of 2017.</p> "> Figure 3
<p>The framework of the proposed HST-GCN model. ⊙ refers to the element-wise Hadamard product and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>(</mo> <mo>·</mo> <mo>)</mo> </mrow> </semantics></math> refers to the sigmoid function.</p> "> Figure 4
<p>A map of the distribution of parking bays and areas in Melbourne.</p> "> Figure 5
<p>The heat map of the visualization of the weighted matrix <span class="html-italic">W</span>, which is determined by the distance between the two areas. The color of the heat map indicates the weight values of the two parking areas, which can be calculated by using Equation (<a href="#FD2-remotesensing-13-03338" class="html-disp-formula">2</a>).</p> "> Figure 6
<p>The heat map of the visualization of the weighted matrix <math display="inline"><semantics> <msub> <mi>W</mi> <mi>λ</mi> </msub> </semantics></math>, which is determined by the “distribution distance” between the two areas. The color of the heat map indicates the weight values of the two parking areas, which can be calculated by using Equation (<a href="#FD3-remotesensing-13-03338" class="html-disp-formula">3</a>).</p> "> Figure 7
<p>The prediction of a randomly selected area with a 15-min time horizon.</p> "> Figure 8
<p>The prediction of a randomly selected area with a 30-min time horizon.</p> "> Figure 9
<p>The prediction of a randomly selected area with a 60-min time horizon.</p> ">
Abstract
:1. Introduction
- We propose the hybrid spatial–temporal graph convolutional network (HST-GCN) framework for parking availability prediction. In the HST-GCNs, we adopt a 1D convolution and gated linear units (GLUs) to model instantaneous temporal features and use graph convolutional networks (GCNs) to capture the global spatial features. Then, we use the spatial–temporal convolutional block to capture the instantaneous spatial–temporal correlations.
- We propose a graph attention network and integrate into the spatial–temporal convolutional block, which also adds long-term spatial–temporal correlations into the HST-GCN architecture and helps obtain a stable prediction result.
- We conducted extensive experiments on a large-scale real-world dataset, and the experimental results demonstrated that the proposed framework outperformed state-of-the-art baselines when predicting the POR of areas with different time horizons.
2. Related Work
2.1. Parking Availability Prediction
2.2. Graph-Based Methods for Predictions
2.3. Attention Mechanisms on Graphs
3. Preliminaries
3.1. Parking Occupancy Rate
3.2. Graph Construction
3.3. Parking Duration Distribution
3.4. Problem Definition
4. Methodology
4.1. Graph Convolutional Block
4.2. Temporal Gated Convolutional Block
4.3. Spatial–Temporal Convolutional Block
4.4. Hybrid Spatial–Temporal Correlations
4.5. Loss Function
Algorithm 1: POR Prediction Algorithm |
Input: The arrival and departure events of the sampled parking bays and the vector of sampled time , where n is 8928; Output: The evaluation metric, i.e., the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE)
|
5. Experiments
5.1. Data Pre-Processing
5.1.1. Data Selection
5.1.2. On-Street Parking Occupancy Rate
5.1.3. The Weight Matrix
5.2. Experimental Setting
5.2.1. Evaluation Metric
- Mean absolute error (MAE):
- Root mean square error (RMSE):
- Mean absolute percentage error (MAPE):
5.2.2. Prediction Models
- HA: The historical average, which models the POR as a seasonal process and uses a weighted average of previous seasons as the prediction. The period used is one week, and the prediction is based on aggregated data from previous weeks. For example, the prediction at 8:00 a.m. for this Monday is the average parking occupancy rate (POR) at 8:00 a.m. on all previous Mondays. Since the historical average method does not depend on short-term data, its performance is invariant for different prediction horizons.
- ARIMA: The autoregressive integrated moving average (ARIMA) [20] model, which is also known as an integrated moving average autoregressive model, is one of the time-series forecasting analysis methods.
- LSTM: In the long short-term memory model [7], the temporal correlations are taken into account. However, the spatial correlations are not captured.
- DCRNN: The diffusion convolution recurrent neural network [17], which uses a bidirectional graph random walk to model spatial dependency and a recurrent neural network to capture the temporal dynamics.
- STGCN: The spatio-temporal graph convolutional network [18], which combines graph convolutional networks and temporal gated networks to capture spatial–temporal correlations.
- ASTGCN: The attention-based spatial–temporal graph convolution network [27], which combines the spatial–temporal attention mechanism and the spatial–temporal convolution to capture the dynamic spatial–temporal correlations.
5.2.3. Details of the Experiment
- All of the experiments were performed on a Windows 10 platform (CPU: AMD Ryzen 7 3700X 8-Core Processor @ 3.60 GHz, GPU: GeForce GTX 1650 SUPER).
- Though parking events have different characteristics between weekdays and weekends, to keep the data uniform, we considered all of July to evaluate the performance of the proposed scheme. At any sample time, all of the models used the previous 60 min (i.e., ) of observed data points to predict parking conditions in the next 15, 30, and 60 min (i.e., ).
- In the HST-GCN model, the channels of the three layers in the STCB were set to 64, 32, and 64, respectively. Furthermore, the graph convolution kernel size K and temporal convolution kernel size were set to 3.
- For the Chebyshev polynomial approximation in the proposed scheme, we trained our models by minimizing the mean square error using RMSProp [38] for 100 epochs with a batch size of 64. The initial learning rate was with a decay rate of 0.5 after every 10 epochs. The proportion of training, validation, and testing parts of the datasets were split to 23:4:4.
- To show the effects of our mechanism, we created a new model named HST-GCN , which replaced the mechanism with a GAT for comparison.
5.3. Experimental Results
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manville, M.; Shoup, D. People, Parking and Cities. J. Urban Plan. Dev. 2005, 131, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Rivano, H.; Le Mouël, F. A Survey of Smart Parking Solutions. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3229–3253. [Google Scholar] [CrossRef] [Green Version]
- Gallivan, S. IBM Global Parking Survey: Drivers Share Worldwide Parking Woes; Technical Report; IBM: New York, NY, USA, 2011. [Google Scholar]
- Bock, F.; Di Martino, S.; Origlia, A. Smart Parking: Using a Crowd of Taxis to Sense On-Street Parking Space Availability. IEEE Trans. Intell. Transp. Syst. 2020, 21, 496–508. [Google Scholar] [CrossRef]
- Tilahun, S.L.; Di Marzo Serugendo, G. Cooperative multiagent system for parking availability prediction based on time varying dynamic Markov chains. J. Adv. Transp. 2017, 2017, 1760842. [Google Scholar] [CrossRef]
- Shao, W.; Salim, F.D.; Gu, T.; Dinh, N.T.; Chan, J. Traveling Officer Problem: Managing Car Parking Violations Efficiently Using Sensor Data. IEEE Internet Things J. 2018, 5, 802–810. [Google Scholar] [CrossRef]
- Shao, W.; Tan, S.; Zhao, S.; Qin, K.K.; Hei, X.; Chan, J.; Salim, F.D. Incorporating LSTM Auto-Encoders in Optimizations to Solve Parking Officer Patrolling Problem. ACM Trans. Spat. Algorithms Syst. (TSAS) 2020, 6, 1–21. [Google Scholar] [CrossRef]
- Guo, J.; He, H.; Sun, C. ARIMA-Based Road Gradient and Vehicle Velocity Prediction for Hybrid Electric Vehicle Energy Management. IEEE Trans. Veh. Technol. 2019, 68, 5309–5320. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Z.; Zheng, Y.; Li, J. Prediction of Taxi Destinations Using a Novel Data Embedding Method and Ensemble Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 68–78. [Google Scholar] [CrossRef]
- Luo, X.; Li, D.; Yang, Y.; Zhang, S. Spatiotemporal traffic flow prediction with KNN and LSTM. J. Adv. Transp. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Peng, H.; Wang, S.; Bhuiyan, M.Z.A.; Wang, L.; Gong, Q.; Liu, L.; Li, J. Deep Irregular Convolutional Residual LSTM for Urban Traffic Passenger Flows Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 972–985. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, Y.; Guo, B.; Qin, K.; Chan, J.; Salim, F.D. Parking Availability Prediction with Long Short Term Memory Model. In Green, Pervasive, and Cloud Computing; Li, S., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 124–137. [Google Scholar]
- Vu, H.T.; Huang, C.C. Parking Space Status Inference Upon a Deep CNN and Multi-Task Contrastive Network with Spatial Transform. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 1194–1208. [Google Scholar] [CrossRef]
- Chandra, R.; Bhattacharya, U.; Bera, A.; Manocha, D. Traphic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8483–8492. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xiong, G.; Chen, Y.; Lv, Y.; Hu, B.; Zhu, F.; Wang, F.Y. A Hybrid Deep Learning Approach with GCN and LSTM for Traffic Flow Prediction. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1929–1933. [Google Scholar]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2018, arXiv:1707.01926. [Google Scholar]
- Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Yu, F.; Guo, J.; Zhu, X.; Shi, G. Real time prediction of unoccupied parking space using time series model. In Proceedings of the 2015 International Conference on Transportation Information and Safety (ICTIS), Wuhan, China, 25–28 June 2015; pp. 370–374. [Google Scholar] [CrossRef]
- Liu, Y.; Sha, M. Research on Prediction of Traffic Flow at Non-detector Intersections Based on Ridge Trace and Fuzzy Linear Regression Analysis. In Proceedings of the 2009 International Conference on Computational Intelligence and Security, Beijing, China, 11–14 December 2009; Volume 2, pp. 571–575. [Google Scholar]
- Bock, F.; Di Martino, S.; Origlia, A. A 2-step approach to improve data-driven parking availability predictions. In Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational Transportation Science, Redondo Beach, CA, USA, 7–10 November 2017; pp. 13–18. [Google Scholar]
- Vlahogianni, E.I.; Kepaptsoglou, K.; Tsetsos, V.; Karlaftis, M.G. A Real-Time Parking Prediction System for Smart Cities. J. Intell. Transp. Syst. 2016, 20, 192–204. [Google Scholar] [CrossRef]
- Zheng, Y.; Rajasegarar, S.; Leckie, C. Parking Availability Prediction for Sensor-Enabled Car Parks in Smart Cities. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 1–6. [Google Scholar]
- Yang, S.; Ma, W.; Pi, X.; Qian, S. A Deep Learning Approach to Real-Time Parking Occupancy Prediction in Transportation Networks Incorporating Multiple Spatio-Temporal Data Sources. Transp. Res. Part C Emerg. Technol. 2019, 107, 248–265. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 922–929. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–8 February 2020; Volume 34, pp. 1234–1241. [Google Scholar]
- Huang, R.; Huang, C.; Liu, Y.; Dai, G.; Kong, W. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional Networks. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 11–17 July 2020; Bessiere, C., Ed.; International Joint Conferences on Artificial Intelligence Organization, 2020; pp. 2355–2361. [Google Scholar]
- Shao, W.; Zhao, S.; Zhang, Z.; Wang, S.; Rahaman, M.S.; Song, A.; Salim, F.D. FADACS: A Few-Shot Adversarial Domain Adaptation Architecture for Context-Aware Parking Availability Sensing. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom), Pisa, Italy, 21–25 March 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Liu, K.S.; Gao, J.; Wu, X.; Lin, S. On-Street Parking Guidance with Real-Time Sensing Data for Smart Cities. In Proceedings of the 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 11–13 June 2018; pp. 1–9. [Google Scholar]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional Neural Networks for Graphs. In Proceedings of the International Conference on Machine Learning (PMLR), New York, NY, USA, 20–22 June 2016; pp. 2014–2023. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16), Barcelona, Spain, 4–9 December 2016; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 3844–3852. [Google Scholar]
- Chatterjee, S.; Roy, S.; Das, A.K.; Chattopadhyay, S.; Kumar, N.; Vasilakos, A.V. Secure Biometric-Based Authentication Scheme Using Chebyshev Chaotic Map for Multi-Server Environment. IEEE Trans. Dependable Secur. Comput. 2016, 15, 824–839. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J. Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization. IEEE Trans. Signal Process. 2019, 67, 2357–2370. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Salim, F.D.; Song, A.; Bouguettaya, A. Clustering Big Spatiotemporal-Interval Data. IEEE Trans. Big Data 2016, 2, 190–203. [Google Scholar] [CrossRef]
- Dubey, S.R.; Chakraborty, S.; Roy, S.K.; Mukherjee, S.; Singh, S.K.; Chaudhuri, B.B. DiffGrad: An Optimization Method for Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4500–4511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feature | Description |
---|---|
Area | City area—used for administrative purposes. |
ArriveTime | Date and time that the sensor detected that a vehicle was located over it. |
DepartureTime | Date and time that the sensor detected that a vehicle was no longer located over it. |
StreetMarker | The street marker that was located next to the parking bay with a unique ID for the bay. |
DurationSeconds | Time difference between arrival and departure events (measured in seconds). |
Vehicle Present | Representing whether there was a vehicle present. |
Longitude | Geographical information |
latitude | Geographical information |
Model | Evaluation Metrics (15/30/60 min) | ||
---|---|---|---|
MAPE (%) | MAE | RMSE | |
HA | 15.2083 | 0.0723 | 0.0991 |
ARIMA | 10.4794/ 13.5052/ 19.1953 | 0.0544/ 0.0696/ 0.0982 | 0.0711/ 0.0906/ 0.1236 |
LSTM | 10.5566/ 12.9892/ 17.5452 | 0.0644/ 0.0769/ 0.1004 | 0.0886/ 0.1037/ 0.1329 |
DCRNN | 10.4845/ 14.3646/ 19.4344 | 0.0355/ 0.0471/ 0.0649 | 0.0519/ 0.0666/ 0.0899 |
STGCN | 7.2983/ 9.7159/ 12.9341 | 0.0355/ 0.0467/ 0.0630 | 0.0494/ 0.0639/ 0.0851 |
ASTGCN | 9.9607/ 13.3459/ 19.2274 | 0.0351/ 0.0466/ 0.0627 | 0.0518/ 0.0665/ 0.0858 |
HST-GCN | 7.1222/ 9.3659/ 12.2568 | 0.0345/ 0.0456/ 0.0593 | 0.0487/ 0.0632/ 0.0801 |
Training Time Consumption (s) | |||
---|---|---|---|
STGCN | DCRNN | ASTGCN | HST-GCN |
151.83 | 6271.34 | 632.77 | 152.05 |
min | MAE | MAPE (%) | RMSE | |
---|---|---|---|---|
HST-GCN * | 15 | 0.03496 ± 0.00031 | 7.1691 ± 0.1130 | 0.04911 ± 0.00041 |
30 | 0.04600 ± 0.00077 | 9.4814 ± 0.2830 | 0.06316 ± 0.00098 | |
60 | 0.06048 ± 0.00150 | 12.7821 ± 0.3502 | 0.08138 ± 0.00178 | |
HST-GCN | 15 | 0.03503 ± 0.00020 | 7.1441 ± 0.0789 | 0.04916 ± 0.00033 |
30 | 0.04592 ± 0.00083 | 9.4658 ± 0.2778 | 0.06316 ± 0.00090 | |
60 | 0.06033 ± 0.00097 | 12.4288 ± 0.2719 | 0.08172 ± 0.00134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Jin, Z.; Hui, Y.; Xu, Y.; Shao, W. Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction. Remote Sens. 2021, 13, 3338. https://doi.org/10.3390/rs13163338
Xiao X, Jin Z, Hui Y, Xu Y, Shao W. Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction. Remote Sensing. 2021; 13(16):3338. https://doi.org/10.3390/rs13163338
Chicago/Turabian StyleXiao, Xiao, Zhiling Jin, Yilong Hui, Yueshen Xu, and Wei Shao. 2021. "Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction" Remote Sensing 13, no. 16: 3338. https://doi.org/10.3390/rs13163338
APA StyleXiao, X., Jin, Z., Hui, Y., Xu, Y., & Shao, W. (2021). Hybrid Spatial–Temporal Graph Convolutional Networks for On-Street Parking Availability Prediction. Remote Sensing, 13(16), 3338. https://doi.org/10.3390/rs13163338