Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach
"> Figure 1
<p>Study area and test areas A and B.</p> "> Figure 2
<p>UAV images of the test areas (A, B) and ground hyperspectral images (<b>a</b>,<b>b</b>).</p> "> Figure 3
<p>Sequoia sensor spectral response function.</p> "> Figure 4
<p>Inversion results and ground measurement of soil salinity in test areas A and B.</p> "> Figure 5
<p>Soil salinity trend surface of test area A.</p> "> Figure 6
<p>Soil salinity trend surface of test area B.</p> "> Figure 7
<p>The trend surface of the residuals in the test area A.</p> "> Figure 8
<p>The trend surface of the residuals in the test area B.</p> "> Figure 9
<p>Inversion results based on satellite-UAV-ground integration.</p> "> Figure 10
<p>Scatter plots of measured sample points and soil salinity inversion results by two methods in Kenli District.</p> "> Figure 11
<p>Scatter plots of soil salinity inversion results and measured salinity of corn in 2019.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Ground Data Acquisition and Preprocessing
2.2.2. UAV Data Collection and Preprocessing
2.2.3. Sentinel-2A Data Acquisition and Preprocessing
2.3. UAV-Ground Data Fusion
2.4. Construction of Soil Salinity Inversion Model Based on Fused UAV Images
2.4.1. Screening of UAV Image Vegetation Index
2.4.2. Construction and Verification of Inversion Model
2.5. Satellite-UAV Upscale Conversion of Soil Salinity Inversion Model
2.5.1. Information Extraction of the Corn Planting Area
2.5.2. Upscale Transformation of Inversion Model
2.5.3. Satellite-UAV-Ground Soil Salinity Inversion and Accuracy Verification
3. Results and Analysis
3.1. Results of UAV-Ground Data Fusion
3.2. Correlation between UAV Vegetation Index and Soil Salinity
3.3. The Soil Salinity Inversion Model Based on the UAV-ground Fusion Image and the Inversion Result of the Test Area
3.4. Satellite-UAV-Ground Integrated Soil Salinity Upscale Inversion Model
3.4.1. Trend Surface Conversion Function
3.4.2. Analysis of Upscale Residual Results
3.4.3. Satellite-UAV-Ground Integrated Inversion Model
3.5. Corn Planting Area and Analysis of the Results of Soil Salinity Inversion
3.6. Verification of the Accuracy of the Inversion Model
3.6.1. Accuracy Verification of Model Inversion Results
3.6.2. Verification of Model Universality
4. Discussion
5. Conclusions
- (1)
- The fusion of the four bands of the UAV image with the ground hyperspectral improved the degree of fitting with the hyperspectral data. The vegetation indexes based on the UAV band after fusion had a high correlation with soil salinity. According to the correlation coefficient and variance expansion factor, three sensitive vegetation indexes, NDVI, DVI, and GRVI, were selected as independent variables for PLS modeling and R2 = 0.743; thus, the inversion results were coincident with the actual distribution of soil salinity in the test area.
- (2)
- The PLS model S0.05 = 7.375–8.683 × NDVI − 3.083 × DVI + 0.211 × GRVI constructed with the fused UAV images was used as the trend surface conversion function, and the PLS model of the residual ΔS10 was constructed as ΔS10 = −1.161 + 2.347 × NDVI1 − 4.505 × DVI1 − 0.08 × GRVI1. Thus, the Sentinel-2A satellite scale PLS inversion model of soil salinity in the coastal corn planting area of S10 = 6.214–6.336 × NDVI1 − 7.588 × DVI1 + 0.131 × GRVI1 was obtained.
- (3)
- The actual soil salinity in the corn planting area was used to verify the inversion results of satellite-UAV-ground integration and satellite-UAV ascending scale, and the inversion results of satellite-UAV-ground were better than those of satellite-UAV inversion and had high consistency with the actual salt distribution. The Sentinel-2A image of corn growing area on 19 July 2019 was used to verify the universality of the model; the R2 of soil salt inversion and measured soil salt was 0.605, which indicated that the model had an excellent universality.
- (4)
- The distribution of non-salinized soil in the study area was small, and the majority was mild and moderate salinized soil, accounting for 88.36% of the total area, which was concentrated in the southwest and central part of Kenli District, while the distribution of severe salinized soil and salinized soil was small and scattered in the corn planting area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, F.; Mohammad, A.; Brandon, H.; Hamid, S.; Asghar, R.; Abolhasan, F.; Thomas, S.; Ruhollah, T. Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecol. Indic. 2020, 118, 106736. [Google Scholar] [CrossRef]
- Abedi, F.; Amirian-Chakan, A.R.; Faraji, M.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Razmjoue, D.; Scholten, T. Salt dome induced soil salinity in southern Iran–prediction and mapping with averaging machine learning models. Land Degrand. Dev. 2020, 32, 1540–1554. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.; Mitiku, H.; Borresen, T.; Lal, R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degrand. Dev. 2008, 19, 351–367. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, G.X.; Gao, P.; Cui, K.; Li, T. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum—A Case Study in Kenli District of the Yellow River Delta. Sci. Agric. Sin. 2020, 53, 5005–5016. [Google Scholar]
- Maleki, S.; Karimi, A.; Zeraatpisheh, M.; Poozeshi, R.; Feizi, H. Long-term cultivation effects on soil properties variations in different landforms in an arid region of eastern Iran. Catena 2021, 206, 105465. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth 2013, 55, 43–52. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, F.; Chan, N.; Kung, H.; Liu, S.; Deng, L. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Aldabaa, A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239, 34–46. [Google Scholar] [CrossRef] [Green Version]
- El Harti, A.; Lhissou, R.; Chokmani, K.; Ouzemou, J.E.; Hassouna, M.; Bachaoui, E.M.; El Ghmari, A. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int. J. Appl. Earth Obs. 2016, 50, 64–73. [Google Scholar] [CrossRef]
- Zhang, T.T.; Qi, J.G.; Gao, Y.; Ouyang, Z.T.; Zeng, S.L.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Nurmemet, I.; Ghulam, A.; Tiyip, T.; Elkadiri, R.; Ding, J.L.; Maimaitiyiming, M.; Abliz, A.; Sawut, M.; Zhang, F.; Abliz, A.; et al. Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data. Remote Sens. 2015, 7, 8803–8829. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.T.; Mahdi, H.; Kamran, E. Retrieval of soil salinity from Sentinel-2 multispectral imagery. Eur. J. Remote Sens. 2019, 52, 138–154. [Google Scholar]
- Wei, G.; Li, Y.; Zhang, Z.; Chen, Y.; Chen, J.; Yao, Z.; Lao, C.; Chen, H. Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms. PeerJ 2020, 8, e9087. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, B.; Shen, Q.; Yao, Y.; Zhang, S.; Wei, H.; Yao, R.; Zhang, Y. Estimation of Soil Salt and Ion Contents Based on Hyperspectral Remote Sensing Data: A Case Study of Baidunzi Basin, China. Water 2021, 13, 559. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R.; Barr, S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sens. Environ. 2019, 223, 229–242. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Q.; Wang, Y.J. Remote sensing image fusion based on two-stream fusion network. Inform. Fusion 2020, 55, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Al-Shafie, W.M.; Mhaimeed, A.S.; Ziadat, F.; Nangia, V.; Payne, W.B. Soil salinity mapping by multiscale remote sensing in mesopotamia, Iraq. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 4442–4452. [Google Scholar] [CrossRef]
- He, C.Y.; Gao, B.; Huang, Q.X.; Ma, Q.; Dou, Y.Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.J.; Hao, X.; Cosh, M.H.; Prueger, J.H.; Zhu, Z.; Gutenberg, L. Downscaling of surface soil moisture retrieval by combining MODIS/Landsat and in situ measurements. Remote Sens. 2018, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, H.; Zhao, G.X.; Wang, Z.R.; Wang, D.Y. Spectral Index Fusion for Salinized Soil Salinity Inversion Using Sentinel-2A and UAV Images in a Coastal Area. IEEE Access 2020, 8, 159595–159608. [Google Scholar] [CrossRef]
- Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A.C.; Fassnacht, F.E. UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2019, 227, 61–73. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 2019, 9, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shi, Z.; Huang, J.Y.; Zhou, L.Q.; Zhou, Y.; Wang, L. Characterization of field scale soil variability using remotely and proximally sensed data and response surface method. Stoch. Environ. Res. Risk Assess. 2016, 30, 859–869. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Zhao, G.X. A Harmonious Satellite-Unmanned Aerial Vehicle-Ground Measurement Inversion Method for Monitoring Salinity in Coastal Saline Soil. Remote Sens. 2019, 11, 1700. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.N.; Li, X.Y.; Shi, H.B.; Cui, J.Q.; Wang, W.G.; Bu, X.Y. Remote Sensing Inversion of Soil Salinity and Seasonal Difference Analysis Based on Multi-source Data Fusion. Trans. Chin. Soc. Agric. Mach. 2020, 51, 169–180. [Google Scholar]
- Jia, P.P.; Sun, Y.; Shang, T.H.; Zhang, J.H. Estimation models of soil water-salt based on hyperspectral and Landsat-8 OLI image. Chin. J. Ecol. 2020, 39, 2456–2466. [Google Scholar]
- Zhao, Q.Q.; Bai, J.H.; Gao, Y.C.; Zhao, H.X.; Zhang, G.L.; Cui, B.S. Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degrad. Dev. 2020, 31, 2255–2267. [Google Scholar] [CrossRef]
- Wen, Y.; Guo, B.; Zang, W.Q.; Ge, D.Z.; Luo, W.; Zhao, H.H. Desertification detection model in Naiman Banner based on the albedo-modified soil adjusted vegetation index feature space using the Landsat8 OLI images. Geomat. Nat. Hazards Risk 2019, 10, 544–558. [Google Scholar] [CrossRef]
- Wang, Z.R.; Zhao, G.X.; Gao, M.X.; Chang, C.Y.; Jiang, S.Q.; Jia, J.C.; Li, J. Spatial variability of soil water and salt in summer and soil salt microdomain characteristics in Kenli County, Yellow River Delta. Acta Ecol. Sin. 2016, 36, 1040–1049. [Google Scholar]
- Wen, X.; Zhu, X.C.; Yu, R.Y.; Xiong, J.L.; Gao, D.S.; Jiang, Y.M.; Yang, G.J. Visualization of Chlorophyll Content Distribution in Apple Leaves Based on Hyperspectral Imaging Technology. Agric. Sci. China 2019, 10, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhao, G.X.; Su, B.W.; Chen, X.N.; Zhang, S.M. Research on the Decision Model of Variable Nitrogen Application in Winter Wheat’s Greening Period Based on UAV Multispectral Image. Spectrosc. Spect. Anal. 2019, 39, 3599–3605. [Google Scholar]
- He, J.; Li, J.; Yuan, Q.Q.; Li, H.F.; Shen, H.F. Spatial–Spectral Fusion in Different Swath Widths by a Recurrent Expanding Residual Convolutional Neural Network. Remote Sens. 2019, 11, 2203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Tashpolat, T.; Ding, J.L. Simulation and Subsection between Fields Measured Endmember Spectrum and Multi-spectrum Image of TM. Opto-Electron. Eng. 2012, 39, 62–70. [Google Scholar]
- Shao, Z.; Cai, J. Remote sensing image fusion with deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1656–1669. [Google Scholar] [CrossRef]
- Said, N.; Henning, B.; Joachim, H. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar]
- Wang, X.; Zhang, F.; Ding, J.; Latif, A. Johnson VC. Estimation of soil salt content (SSC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR), Northwest China, based on a Bootstrap-BP neural network model and optimal spectral indices. Sci. Total Environ. 2018, 615, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Tilley, D.R.; Ahmed, M.; Son, J.H.; Badrinarayanan, H. Hyperspectral Reflectance Response of Freshwater Macrophytes to Salinity in a Brackish Subtropical Marsh. J. Environ. Qual. 2007, 36, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Zhao, G.X.; Chen, J.C.; Wang, R.Y.; Gao, M.X. Remote sensing inversion of saline soil salinity in the mouth of the Yellow River based on improved vegetation index. Trans. Chin. Soc. Agric. Eng. 2015, 31, 107–114. [Google Scholar]
- Dong, J.J.; Niu, J.M.; Zhang, Q.; KangSa, R.L.; Han, F. Remote sensing yield estimation of typical grassland based on multi-source satellite data. Chin. J. Grassl. 2013, 35, 64–69. [Google Scholar]
- Xu, L.; Wang, Q. Retrieval of soil water content in saline soils from emitted thermal infrared spectra using partial linear squares regression. Remote Sens. 2015, 7, 14646–14662. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.D. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Li, X.J.; Xin, X.Z.; Jiang, T. Spatial downscaling research of satellite land surface temperature based on spectral normalization index. Acta Geod. Cartogr. Sin. 2017, 46, 353–361. [Google Scholar]
- Wu, W.C. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. 2014, 6, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote Sens. Environ. 2015, 169, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Buces, N.; Siebe, C.; Cram, S.; Palacio, J.L. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. J. Arid. Environ. 2006, 65, 644–667. [Google Scholar] [CrossRef]
- Qi, G.H.; Zhao, G.X.; Xi, X. Soil salinity inversion of winter wheat areas based on satellite-unmanned aerial vehicle-ground collaborative system in coastal of the Yellow River Delta. Sensors 2020, 20, 6521. [Google Scholar] [CrossRef] [PubMed]
- Francos, N.; Romano, N.; Nasta, P.; Zeng, Y.; Szabó, B.; Manfreda, S.; Ciraolo, G.; Mészáros, J.; Zhuang, R.; Su, B.; et al. Mapping Water Infiltration Rate Using Ground and UAV Hyperspectral Data: A Case Study of Alento, Italy. Remote Sens. 2021, 13, 2606–2636. [Google Scholar] [CrossRef]
- Youme, O.; Bayet, T.; Dembele, J.; Cambier, C. Deep Learning and Remote Sensing: Detection of Dumping Waste Using UAV. Procedia Comput. Sci. 2021, 185, 361–369. [Google Scholar] [CrossRef]
- Azarang, A.; Kehtarnavaz, N. Image fusion in remote sensing by multi-objective deep learning. Int. J. Remote Sen. 2020, 41, 9507–9524. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Chang, F.; Li, S.; Nie, Z. Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery. Neurocomputing 2021, 451, 67–80. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Zhang, H.; Ma, P. Sentinel-2A Image Fusion Using a Machine Learning Approach. IEEE Geosci. Remote 2019, 57, 9589–9601. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Lu, G.; Zhang, B.; Xu, Y.; Wu, F.; Zhang, D. DRPL: Deep Regression Pair Learning For Multi-Focus Image Fusion. IEEE Trans Image Process 2020, 29, 4816–4831. [Google Scholar] [CrossRef]
- Edoardo, A.C.; Costantini, G. Beyond the concept of dominant soil: Preserving pedodiversity in upscaling soil maps. Geoderma 2016, 271, 243–253. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, W.; Zhao, S.; Jiang, L.; Chen, L.; Zhu, Y. Uncertainty in Upscaling In Situ Soil Moisture Observations to Multiscale Pixel Estimations with Kriging at the Field Level. ISPRS In. J. Geo-Inf. 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Cui, K.; Zhao, G.X.; Wang, Z.R.; Xi, X.; Gao, P.P.; Qi, G.H. Multi-scale spatial variability of soil salinity in typical fields of the Yellow River Delta in summer. Chin. J. Appl. Ecol. 2020, 31, 1451–1458. [Google Scholar]
- Hu, J. Estimation of Soil Salinity in Arid Area Based on Multi-Source Remote Sensing. Master’s Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Chen, W.J. Soil Salinity Retrieval and Dynamic Analysis Based Onspectral Intercalibration of Multi-Sensor Data. Master’s Thesis, Southeast University, Nanjing, China, 2018. [Google Scholar]
- Chen, J.Y.; Wang, X.T.; Zhang, Z.T.; Han, J.; Yao, Z.H.; Wei, G.F. Soil Salinization Monitoring Method Based on UAV-Satellite Remote Sensing Scale-up. Trans. Chin. Soc. Agric. Mach. 2019, 50, 161–169. [Google Scholar]
NO. | Vegetation Index | Formula | Citation |
---|---|---|---|
1 | NDVI | (NIR − R)/(NIR + R) | [34] |
2 | NDRE | (NIR − RE)/(NIR + RE) | |
3 | OSAVI | (1 + 0.16) (NIR − R)/(NIR + R + 0.16) | |
4 | DVI | NIR − R | |
5 | GNDVI | (NIR − G)/(NIR + G) | [42] |
6 | GRVI | (G − R)/(G + R) |
Fusion Model | Fitting Degree R2 | ||
---|---|---|---|
Unfusion | Fusion | ||
Green | Y= 3.254x2 − 0.234x + 0.089 | 0.629 | 0.761 |
Red | Y= −0.197x2 + 0.194x + 0.068 | 0.705 | 0.801 |
Redg | Y= −0.125x2 + 0.238x + 0.194 | 0.664 | 0.775 |
Nir | Y= 1.705x2−0.439x + 0.319 | 0.611 | 0.798 |
r | SS | NDVI | NDRE | OSAVI | DVI | GNDVI | GRVI |
---|---|---|---|---|---|---|---|
SS | 1 | ||||||
NDVI | −0.739 ** | 1 | |||||
NDRE | −0.440 ** | 0.330 ** | 1 | ||||
OSAVI | −0.708 ** | 0.989 ** | 0.328 ** | 1 | |||
DVI | −0.715 ** | 0.908 ** | 0.287 ** | 0.959 ** | 1 | ||
GNDVI | −0.728 ** | 0.950 ** | 0.408 ** | 0.950 ** | 0.890 ** | 1 | |
GRVI | −0.625 ** | 0.882 ** | 0.484 ** | 0.874 ** | 0.803 ** | 0.935 ** | 1 |
Inversion Model | Modeling Set | Validation Set | |||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
UAV-ground unfusion | S0.05 = 5.885–1.669 × NDVI − 8.745 × DVI + 1.273 × GRVI | 0.639 | 0.922 | 0.617 | 1.071 |
UAV-ground fusion | S0.05 = 7.375–8.683 × NDVI − 3.083 × DVI + 0.211 × GRVI | 0.743 | 0.702 | 0.726 | 0.813 |
Numerical Value (g/kg) | Statistical Indicators | |||
---|---|---|---|---|
Maximum Value | Minimum Value | Average Value | Standard Deviation | |
ΔS0.05 | 0.972 | −0.997 | −0.027 | 0.524 |
ΔS10 | 0.795 | −0.813 | −0.016 | 0.461 |
Vegetation Index | |||
---|---|---|---|
r | NDVI1 | DVI1 | GRVI1 |
ΔS10 | 0.702 | 0.657 | 0.619 |
Soil Salinity Level | Non Saline | Mild Salinization | Moderate Salinization | Severe Salinization | Saline Soil |
---|---|---|---|---|---|
Proportion of inversion result | 6.21 | 40.18 | 48.18 | 5.31 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Chang, C.; Yang, W.; Gao, P.; Zhao, G. Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach. Remote Sens. 2021, 13, 3100. https://doi.org/10.3390/rs13163100
Qi G, Chang C, Yang W, Gao P, Zhao G. Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach. Remote Sensing. 2021; 13(16):3100. https://doi.org/10.3390/rs13163100
Chicago/Turabian StyleQi, Guanghui, Chunyan Chang, Wei Yang, Peng Gao, and Gengxing Zhao. 2021. "Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach" Remote Sensing 13, no. 16: 3100. https://doi.org/10.3390/rs13163100
APA StyleQi, G., Chang, C., Yang, W., Gao, P., & Zhao, G. (2021). Soil Salinity Inversion in Coastal Corn Planting Areas by the Satellite-UAV-Ground Integration Approach. Remote Sensing, 13(16), 3100. https://doi.org/10.3390/rs13163100