Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images
"> Figure 1
<p>The location of the study area (Lishu County) and covered GF-1 B/D image (Near-infrared: Band 4, Red: Band 3, Green: Band 2).</p> "> Figure 2
<p>Different corn residue covered areas from GF-1 B/D image in Lishu County (R1 is corn high stubble residue covered area, R2 is short-stubble residue covered area, R3 is non-CRCA).</p> "> Figure 3
<p>MSCU-net architecture. N1: Up-sampling of the image feature with a 2 × 2 window size; N2: Feature image fusion; N3: The repeated application of two 3 × 3 convolutions followed by batch normalization; N4: Max pooling with 2 × 2 window size for down-sampling; N5: Attention mechanism module; N6: Multiscale Convolution Group (MSCG); M: Loss function of the intermediate layer, E: Loss function of high layer.</p> "> Figure 4
<p>Channel attention module (CAM) and spatial attention module (SAM). P1: Maximum global pooling; P2: Global average pooling; P3: Maximum pooling of channels; P4: Average pooling of channels; MLP: Multilayer Perceptron; P5: The convolution kernel is 7 × 7 two-dimensional convolutions, followed by sigmoid activation function; P6: Element-wise addition; P7: Element-wise multiplication; P8: Channel merging.</p> "> Figure 5
<p>Multiscale Convolution Group (MSCG).</p> "> Figure 6
<p>The eight validation (Val) samples (Near-infrared: Band 4, Red: Band 3, Green: Band 2) and corresponding ground truth (GT) label.</p> "> Figure 7
<p>Classification results of ablation experiments using eight validation samples.</p> "> Figure 7 Cont.
<p>Classification results of ablation experiments using eight validation samples.</p> "> Figure 8
<p>Classification maps for SVM, NN, SegNet, and Dlv3+ on eight validation samples.</p> "> Figure 8 Cont.
<p>Classification maps for SVM, NN, SegNet, and Dlv3+ on eight validation samples.</p> "> Figure 9
<p>The classification result of corn residue covered area using MSCU-net + C in Lishu county.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area
2.2. Data Collection
2.2.1. Acquisition of Remote Sensing Images
2.2.2. Field Data Collection
3. Method
3.1. Network Architecture
3.1.1. Attention Mechanism
3.1.2. Multiscale Convolution Group (MSCG)
3.1.3. Double Loss Function
3.2. Network Optimization
3.3. Full Connected Conditional Random Field (FCCRF)
3.4. Accuracy Assessment
4. Results and Analysis
4.1. Architecture Ablation Experiment
4.2. Model Comparative
4.3. Mapping of Corn Residue Covered Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorokin, A.; Owens, P.; Láng, V.; Jiang, Z.D.; Michéli, E.; Krasilnikov, P. “Black soils” in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: Quantitative correlation and implications for pedodiversity assessment. CATENA 2021, 196, 104824. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhang, X.Y.; Wang, Y.X.; Sui, Y.Y.; Zhang, S.L.; Herbert, S.J.; Ding, G. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2020, 56, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Liu, J.; Wei, D.; Zhu, P.; Cui, X.A.; Zhou, B.; Wang, G. Effects of over 30-year of different fertilization regimes on fungal community compositions in the black soils of northeast China. Agric. Ecosyst. Environ. 2017, 248, 113–122. [Google Scholar] [CrossRef]
- Bannari, A.; Staenz, K.; Champagne, C.; Khurshid, K.S. Spatial variability mapping of crop residue using Hyperion (EO-1) hyperspectral data. Remote Sens. 2015, 7, 8107–8127. [Google Scholar] [CrossRef] [Green Version]
- Laflen, J.M.; Amemiya, M.; Hintz, E.A. Measuring crop residue cover. J. Soil Water Conserv. 1981, 36, 341–343. [Google Scholar]
- Lahmar, R. Adoption of conservation agriculture in Europe: Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Aase, J.K.; Tanaka, D.L. Reflectances from four wheat residue cover densities as influenced by three soil backgrounds. Agron. J. 1991, 83, 753–757. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Su, W.; Fu, Y.T.; Zhu, D.H.; Xue, J.H.; Huang, J.X.; Yao, C. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. Eur. J. Agron. 2019, 111, 125938. [Google Scholar] [CrossRef]
- Su, W.; Zhang, M.Z.; Bian, D.H.; Liu, Z.; Huang, J.X.; Wang, W.; Wu, J.Y.; Guo, H. Phenotyping of corn plants using unmanned aerial vehicle (UAV) images. Remote Sens. 2019, 11, 2021. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Daughtry, C.S.T. Spectral indices to improve crop residue cover estimation under varying moisture conditions. Remote Sens. 2016, 8, 660. [Google Scholar] [CrossRef] [Green Version]
- Hamidisepehr, A.; Sama, M.P.; Turner, A.P.; Wendroth, O.O. A Method for Reflectance Index Wavelength Selection from Moisture-Controlled Soil and Crop Residue Samples. Trans. ASABE 2017, 60, 1479–1487. [Google Scholar] [CrossRef]
- Omar, Z.; Stathaki, T. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar]
- Mcnairn, H.; Protz, R. Mapping corn residue cover on agricultural fields in oxford county, ontario, using thematic mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Tian, Q.; Dong, X.; Xu, K.; Zhou, C. Using hyperspectral crop residue angle index to estimate maize and winter-wheat residue cover: A laboratory study. Remote Sens. 2019, 11, 807. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Pan, X.; Liu, Y.; Li, Y.; Zhou, R.; Xie, X. Modeling the Effect of Moisture on the Reflectance of Crop Residues. Agron. J. 2012, 104, 1652–1657. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q.; Tang, S.; Xu, K.; Zhou, C. A dynamic soil endmember spectrum selection approach for soil and crop residue linear spectral unmixing analysis. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 306–317. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Zhang, W.C.; Sun, X.; Fu, K.; Wang, C.Y.; Wang, H.Q. Object detection in high-resolution remote sensing images using rotation invariant parts based model. IEEE Geosci. Remote Sens. Lett. 2013, 11, 74–78. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [Google Scholar] [CrossRef] [Green Version]
- Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst. 2018, 166, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Ciecholewski, M. Automated coronal hole segmentation from Solar EUV Images using the watershed transform. J. Vis. Commun. Image Represent. 2015, 33, 203–218. [Google Scholar] [CrossRef]
- Cousty, J.; Bertrand, G.; Najman, L.; Couprie, M. Watershed cuts: Thinnings, shortest path forests, and topological watersheds. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 925–939. [Google Scholar] [CrossRef] [Green Version]
- Balla-Arabé, S.; Gao, X. Geometric active curve for selective entropy optimization. Neurocomputing 2014, 139, 65–76. [Google Scholar] [CrossRef]
- Ding, K.; Xiao, L.; Weng, G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 2017, 134, 224–233. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349–1362. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ding, W.; Liu, C.; Liu, Y.; Wang, Y.; Li, H. ERN: Edge Loss Reinforced Semantic Segmentation Network for Remote Sensing Images. Remote Sens. 2018, 10, 1339. [Google Scholar] [CrossRef] [Green Version]
- Kemker, R.; Salvaggio, C.; Kanan, C. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Xiao, B. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.J.; Kim, M.J. Deeplab v3+ Based Automatic Diagnosis Model for Dental X-ray: Preliminary Study. J. Magn. 2020, 25, 632–638. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.W.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J.M. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3–11. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chen, L.; Tian, X.; Chai, G.; Zhang, X.; Chen, E. A New CBAM-P-Net Model for Few-Shot Forest Species Classification Using Airborne Hyperspectral Images. Remote Sens. 2021, 13, 1269. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, Y.; Zhang, Y.; Jiang, Y.G.; Xue, X.Y.; Sigal, L. Multi-level semantic feature augmentation for one-shot learning. IEEE Trans. Image Process. 2019, 28, 4594–4605. [Google Scholar] [CrossRef] [Green Version]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E. Evaluation of optical remote sensing models for crop residue cover assessment. J. Soil Water Conserv. 2004, 59, 224–233. [Google Scholar]
- Daughtry, C.S.; Doraiswamy, P.C.; Hunt, E.R., Jr.; Stern, A.J.; McMurtrey, J.E., III; Prueger, J.H. Remote sensing of crop residue cover and soil tillage intensity. Soil Tillage Res. 2006, 91, 101–108. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, R. Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials. IEEE Trans. Geosci. Remote Sens. 2010, 49, 688–705. [Google Scholar] [CrossRef]
- Zhang, P.; Ke, Y.; Zhang, Z.; Wang, M.; Li, P.; Zhang, S. Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors 2018, 18, 3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, L.; Shukla, P.; Singh, S.K.; Bajpai, V.; Yadav, U. Land Use Land Cover Classification from Satellite Imagery using mUnet: A Modified Unet Architecture. In Proceedings of the VISIGRAPP (4: VISAPP), Prague, Czech Republic, 25–27 February 2019; pp. 359–365. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Larochelle, H.; Hinton, G.E. Learning to combine foveal glimpses with a third-order boltzmann machine. Adv. Neural Inf. Process. Syst. 2010, 23, 1243–1251. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. 2015, 37, 448–456. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Du, Z.R.; Yang, J.Y.; Ou, C.; Zhang, T.T. Smallholder crop area mapped with a semantic segmentation deep learning method. Remote Sens. 2019, 11, 888. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.Z.; Du, D.L.; Torr, P.H. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1529–1537. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Lin, T.; Xu, J.L.; Shen, X.Q.; Jiang, H.; Zhong, R.H.; Wu, S.S.; Ting, K.C. A spatiotemporal assessment of field residues of rice, maize, and wheat at provincial and county levels in China. GCB Bioenergy 2019, 11, 1146–1158. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, B.; Dong, S.T.; Liu, P.; Zhang, J.W. Response of maize root growth to residue management strategies. Agron. J. 2018, 110, 95–103. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.P.; Xu, M.G.; Liang, A.Z. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [Green Version]
- Mupangwa, W.; Thierfelder, C.; Cheesman, S.; Nyagumbo, I.; Muoni, T.; Mhlanga, B.; Ngwira, A. Effects of maize residue and mineral nitrogen applications on maize yield in conservation-agriculture-based cropping systems of Southern Africa. Renew. Agric. Food Syst. 2020, 35, 322–335. [Google Scholar] [CrossRef]
- Gao, T.Y.; Han, X.; Liu, Z.Y.; Sun, M.S. Hybrid attention-based prototypical networks for noisy few-shot relation classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 6407–6414. [Google Scholar]
- Zhao, Q.H.; Xie, K.L.; Wang, G.H.; Li, Y. Land cover classification of polarimetric SAR with fully convolution network and conditional random field. Acta Geod. Cartogr. Sin. 2020, 49, 65–78. [Google Scholar]
- Daughtry, C.S.T.; Hunt, E.R., Jr.; McMurtrey, J.E., III. Assessing crop residue cover using shortwave infrared reflectance. Remote Sens. Environ. 2004, 90, 126–134. [Google Scholar] [CrossRef]
Bands | Spectral Range | Spatial Resolution | Revisit Cycle |
---|---|---|---|
Panchromatic | 450–900 nm | 2 m | 4 days |
Blue | 450–520 nm | 8 m | |
Green | 520–590 nm | ||
Red | 630–690 nm | ||
Near-Infrared | 770–890 nm |
Name of Layer | Size of Kernel | Number of Kernel |
---|---|---|
Batch_normalization_4 | -- | 1024 |
conv2d_11 | 1×1 | 170 |
conv2d_12 | 1×3 | 170 |
conv2d_13 | 3×1 | 170 |
conv2d_14 | 3×1 | 85 |
conv2d_15 | 1×3 | 85 |
conv2d_16 | 1×1 | 170 |
conv2d_17 | 1×5 | 170 |
conv2d_18 | 5×1 | 170 |
conv2d_19 | 5×1 | 85 |
conv2d_20 | 1×5 | 85 |
conv2d_21 | 1×1 | 170 |
conv2d_22 | 1×7 | 170 |
conv2d_23 | 7×1 | 170 |
conv2d_24 | 7×1 | 85 |
conv2d_25 | 1×7 | 85 |
conv2d_26 | 1×1 | 514 |
Concatenate | -- | 1024 |
Val | IOU | Kappa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
U-net | MU-net | GU-net | MSCU-net | MSCU-net+C | U-net | MU-net | GU-net | MSCU-net | MSCU-net+C | |
1 | 0.9039 | 0.8798 | 0.8899 | 0.9071 | 0.9076 | 0.9214 | 0.9006 | 0.9071 | 0.9221 | 0.9234 |
2 | 0.8667 | 0.8568 | 0.8874 | 0.8984 | 0.8982 | 0.8765 | 0.8646 | 0.8920 | 0.9052 | 0.9049 |
3 | 0.8161 | 0.8053 | 0.7886 | 0.8568 | 0.8710 | 0.8514 | 0.8401 | 0.8202 | 0.8748 | 0.8988 |
4 | 0.9288 | 0.9427 | 0.9449 | 0.9562 | 0.9562 | 0.9223 | 0.9367 | 0.9383 | 0.952 | 0.9519 |
5 | 0.6912 | 0.8041 | 0.7733 | 0.822 | 0.8245 | 0.7808 | 0.8678 | 0.8448 | 0.8795 | 0.8813 |
6 | 0.8722 | 0.8641 | 0.8947 | 0.9244 | 0.9250 | 0.8903 | 0.8833 | 0.9082 | 0.9343 | 0.9354 |
7 | 0.9456 | 0.9378 | 0.9532 | 0.9603 | 0.9727 | 0.9466 | 0.9380 | 0.9536 | 0.9603 | 0.9728 |
8 | 0.8590 | 0.8651 | 0.8577 | 0.9101 | 0.9098 | 0.9017 | 0.9062 | 0.9001 | 0.9388 | 0.9381 |
STD | 0.0747 | 0.0484 | 0.0611 | 0.0438 | 0.0436 | 0.0486 | 0.0326 | 0.0415 | 0.0298 | 0.0280 |
AVG | 0.8604 | 0.8695 | 0.8737 | 0.9044 | 0.9081 | 0.8864 | 0.8922 | 0.8955 | 0.9209 | 0.9258 |
Val | F1-Score (CRCA) | F1-Score (NCRCA) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
U-net | MU-net | GU-net | MSCU-net | MSCU-net+C | U-net | MU-net | GU-net | MSCU-net | MSCU-net+C | |
1 | 0.9495 | 0.9361 | 0.9417 | 0.9513 | 0.9516 | 0.9718 | 0.9644 | 0.9653 | 0.9716 | 0.9718 |
2 | 0.9286 | 0.9229 | 0.9403 | 0.9461 | 0.9463 | 0.9476 | 0.9416 | 0.9516 | 0.9587 | 0.9586 |
3 | 0.8987 | 0.8921 | 0.8818 | 0.9186 | 0.9311 | 0.9526 | 0.9479 | 0.9380 | 0.9562 | 0.9676 |
4 | 0.9631 | 0.9705 | 0.9717 | 0.9776 | 0.9776 | 0.9591 | 0.9662 | 0.9666 | 0.9743 | 0.9743 |
5 | 0.8174 | 0.8914 | 0.8722 | 0.9023 | 0.9038 | 0.9622 | 0.9760 | 0.9722 | 0.9771 | 0.9775 |
6 | 0.9317 | 0.9271 | 0.9444 | 0.9601 | 0.9610 | 0.9584 | 0.9559 | 0.9636 | 0.9735 | 0.9744 |
7 | 0.9720 | 0.9679 | 0.9761 | 0.9844 | 0.9862 | 0.9745 | 0.9701 | 0.9775 | 0.9854 | 0.9867 |
8 | 0.9241 | 0.9276 | 0.9234 | 0.9534 | 0.9527 | 0.9774 | 0.9784 | 0.9766 | 0.9854 | 0.9853 |
STD | 0.0455 | 0.0276 | 0.0354 | 0.0258 | 0.0242 | 0.0100 | 0.0123 | 0.0125 | 0.0101 | 0.0085 |
AVG | 0.9231 | 0.9295 | 0.9315 | 0.9492 | 0.9513 | 0.9630 | 0.9626 | 0.9639 | 0.9728 | 0.9745 |
Val | IOU | Kappa | ||||||
---|---|---|---|---|---|---|---|---|
SVM | NN | SegNet | Dlv3+ | SVM | NN | SegNet | Dlv3+ | |
1 | 0.6601 | 0.6989 | 0.9192 | 0.9021 | 0.6841 | 0.7266 | 0.9327 | 0.9175 |
2 | 0.6596 | 0.6743 | 0.8986 | 0.9036 | 0.6419 | 0.6671 | 0.9019 | 0.9084 |
3 | 0.6029 | 0.6691 | 0.7926 | 0.7723 | 0.6412 | 0.7061 | 0.8222 | 0.8027 |
4 | 0.7036 | 0.7415 | 0.9354 | 0.9638 | 0.5963 | 0.6757 | 0.9257 | 0.9599 |
5 | 0.2531 | 0.4217 | 0.7098 | 0.7743 | 0.1431 | 0.4574 | 0.7951 | 0.8424 |
6 | 0.6364 | 0.6927 | 0.9055 | 0.8764 | 0.6297 | 0.7039 | 0.9185 | 0.8927 |
7 | 0.5842 | 0.6252 | 0.9563 | 0.9440 | 0.4887 | 0.5544 | 0.9569 | 0.9444 |
8 | 0.5077 | 0.6102 | 0.8490 | 0.8324 | 0.5960 | 0.6943 | 0.8937 | 0.8810 |
STD | 0.1340 | 0.0917 | 0.0777 | 0.0676 | 0.1638 | 0.0874 | 0.0525 | 0.0485 |
AVG | 0.5760 | 0.6417 | 0.8708 | 0.8711 | 0.5526 | 0.6482 | 0.8933 | 0.8936 |
Val | F1-Score (CRCA) | F1-Score (NCRCA) | ||||||
---|---|---|---|---|---|---|---|---|
SVM | NN | SegNet | Dlv3+ | SVM | NN | SegNet | Dlv3+ | |
1 | 0.7953 | 0.8228 | 0.9579 | 0.9485 | 0.8884 | 0.9035 | 0.9748 | 0.9690 |
2 | 0.7949 | 0.8055 | 0.9466 | 0.9494 | 0.8468 | 0.8608 | 0.9553 | 0.9590 |
3 | 0.7522 | 0.8017 | 0.8843 | 0.8715 | 0.8888 | 0.9044 | 0.9372 | 0.9304 |
4 | 0.8260 | 0.8516 | 0.9666 | 0.9816 | 0.7687 | 0.8241 | 0.9590 | 0.9783 |
5 | 0.4040 | 0.5932 | 0.8303 | 0.8728 | 0.5577 | 0.8504 | 0.9641 | 0.9696 |
6 | 0.7778 | 0.8185 | 0.9504 | 0.9341 | 0.8519 | 0.8854 | 0.9681 | 0.9585 |
7 | 0.7375 | 0.7694 | 0.9777 | 0.9712 | 0.7512 | 0.7850 | 0.9793 | 0.9732 |
8 | 0.6735 | 0.7579 | 0.9183 | 0.9086 | 0.9178 | 0.9345 | 0.9753 | 0.9724 |
STD | 0.1271 | 0.0750 | 0.0464 | 0.0391 | 0.1095 | 0.0454 | 0.0128 | 0.0141 |
AVG | 0.7202 | 0.7776 | 0.9290 | 0.9297 | 0.8089 | 0.8685 | 0.9641 | 0.9638 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Xie, Z.; Zhang, Y.; Li, J.; Xuan, F.; Huang, J.; Li, X.; Su, W.; Yin, D. Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images. Remote Sens. 2021, 13, 2903. https://doi.org/10.3390/rs13152903
Tao W, Xie Z, Zhang Y, Li J, Xuan F, Huang J, Li X, Su W, Yin D. Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images. Remote Sensing. 2021; 13(15):2903. https://doi.org/10.3390/rs13152903
Chicago/Turabian StyleTao, Wancheng, Zixuan Xie, Ying Zhang, Jiayu Li, Fu Xuan, Jianxi Huang, Xuecao Li, Wei Su, and Dongqin Yin. 2021. "Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images" Remote Sensing 13, no. 15: 2903. https://doi.org/10.3390/rs13152903
APA StyleTao, W., Xie, Z., Zhang, Y., Li, J., Xuan, F., Huang, J., Li, X., Su, W., & Yin, D. (2021). Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images. Remote Sensing, 13(15), 2903. https://doi.org/10.3390/rs13152903