Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data
"> Figure 1
<p>Methodology Flowchart.</p> "> Figure 2
<p>Study site and sampling point locations.</p> "> Figure 3
<p>Photos illustrating the six considered soil salinity classes: non-saline (<b>A</b>), low (<b>B</b>), moderate (<b>C</b>), high (<b>D</b>), very high (<b>E</b>), and extreme salinity, which is sabkha (<b>F</b>).</p> "> Figure 4
<p>Spectral signatures of 100 soil samples with different degrees of salinity.</p> "> Figure 5
<p>Landsat-Operational Land (OLI)-relative spectral response profiles characterizing the filters of each visible- and near-infrared (VNIR) and shortwave infrared (SWIR) spectral band, and the spectral signatures of six soil samples with different electrical conductivity (EC-<sub>Lab</sub>) values: non-saline (<b>A</b>), low (<b>B</b>), moderate (<b>C</b>), high (<b>D</b>), very high (<b>E</b>), and extreme salinity (<b>F</b>).</p> "> Figure 6
<p>Linear regression between EC<sub>-Lab</sub> and chemical parameters (Na<sup>+</sup> and Cl<sup>−</sup>).</p> "> Figure 7
<p>Relationship between EC-<sub>Lab</sub> and predicted salinity (EC-<sub>Predicted</sub>) derived from models based on simulated data.</p> "> Figure 8
<p>Derived soil salinity maps applying eight models.</p> "> Figure 9
<p>Relationship between EC-<sub>Lab</sub> and EC-<sub>Predicted</sub> derived from models based on OLI image data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Sampling and Laboratory Analysis
2.3. Spectroradiometric Measurements
2.4. Landsat-OLI Simulated Data
2.5. Landsat-OLI image
2.6. Image Data Pre-Processing
2.7. Soil Salinity Models and Image Processing
2.8. Statistical Analysis
3. Results and Discussion
3.1. Spectra and Soil Laboratory Analyses
3.2. Model Validation and Comparison Based on Simulated Data
3.3. Models Validation and Comparison Based on Visual Interpretation
3.4. Model Validation and Comparison Based on Image Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Drought under Global Warming: A Review. Wires Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.; MacQuarrie, K. The Uncertainty Associated with Estimating Future Groundwater Recharge: A Summary of Recent Research and an Example from a Small Unconfined Aquifer in a Northern Humid-Continental Climate. J. Hydrol. 2013, 492, 244–253. [Google Scholar] [CrossRef]
- Shahid, S.A.; Al-Shankiti, A. Sustainable Food Production in Marginal Lands-Case of GDLA Member Countries. Int. Soil Water Conserv. Res. 2013, 1, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Cheeseman, J. Food Security in the Face of Salinity, Drought, Climate Change and Population Growth. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 111–123. [Google Scholar] [CrossRef]
- Teh, S.; Koh, H. Climate Change and Soil Salinization: Impact on Agriculture, Water and Food Security. Int. J. Agric. For. Plant. 2016, 2, 1–9. [Google Scholar]
- Bannari, A.; Al-ali, Z.M. Assessing Climate Change Impact on Soil Salinity Dynamics during the Last 30 years (1972-2017) in the Arid Landscape using Landsat TM, ETM+ and OLI data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Mashimbye, Z.E. Remote Sensing of Salt-affected Soil. Ph.D. Thesis, Faculty of Agri-Sciences, Stellenbosch University, Stellenbosch, South Africa, 2013; 151p. [Google Scholar]
- Korolyuk, T. Soil Forming Factors: Their Role in the Formation of Saline Soils on the Plains of Western and Central Ciscaucasia. Eurasian Soil Sci. 2015, 48, 689–700. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Shahgedanova, M. Physical Geography in Northern Eurasia; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Koohafkan, P.; Stewart, B.A. Water and Cereals in Drylands; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; 112p. [Google Scholar]
- Hillel, D. Salinity Manahgement for Sustainable Irrigation: Integrating Science, Environment, and Economics; World Bank Publications: Washington, DC, USA, 2000; 92p. [Google Scholar]
- FAO. Handbook for Saline Soil Management; Vargas, R., Pankova, E.I., Balyuk, S.A., Krasilnikov, P.V., Khasankhanova, G.M., Eds.; Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University: Moscow, Russia, 2018; 144p, ISBN 978-92-5-130141-8. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M. Gene Expression Profiling of Plants Under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Naing, O.O.A.; Iwai, C.B.; Saenjan, P. Food Security and Socio-economic Impacts of Soil Salinization in Northeast Thailand. Int. J. Environ. Rural Dev. 2013, 4, 76–81. [Google Scholar]
- Metternicht, G.; Zinck, J.A. Remote Sensing of Soil Salinization: Impact on Land Management; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2009; 374p. [Google Scholar]
- Bannari, A. Synergy between Sentinel-MSI and Landsat-OLI to Support High Temporal Frequency for Soil Salinity Monitoring in an Arid Landscape. In Research Developments in Saline Agriculture; Dagar, J.C., Yadav, R.K., Sharma, P.C., Eds.; Springer Nature: Singapore, 2019; pp. 67–93. [Google Scholar]
- Metternicht, G.; Zinck, J. Remote Sensing of Soil Salinity: Potentials and Constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Bannari, A.; Guédon, A.M.; El-Ghmari, A. Mapping Slight and Moderate Saline Soils in Irrigated Agricultural Land Using Advanced Land Imager Sensor (EO-1) Data and Semi-Empirical Models. Com. Soil Sci. Plant Anal. J. 2016, 47, 1883–1906. [Google Scholar] [CrossRef]
- Bannari, A.; Hameid, N.; Abuelgasim, A.A.; El-Battay, A. Sentinel-MSI and Landsat-OLI Data Quality Characterization for High Temporal Frequency Monitoring of Soil Salinity Dynamic in an Arid Landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (IEEE-J-Stars) 2020, 13, 2434–2450. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture Handbook: Philadelphia, PA, USA, 1954.
- Zhang, H.K.; Schroder, J.L.; Pittman, J.J.; Wang, J.J.; Payton, M.E. Soil Salinity Using Saturated Paste and 1:1 Soil to Water Extracts. Soil Sci. Soc. Am. J. 2005, 69, 1146–1151. [Google Scholar] [CrossRef]
- Bai, L.; Wang, C.; Zang, S.; Zhang, Y.; Hao, Q.; Wu, X. Remote Sensing of Soil Alkalinity and Salinity in the Wuyuer-Shuangyang River Basin, Northeast China. Remote Sens. 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Metternicht, M.; Goldshleger, N.; Mor, E.; Mirlas, V.; Basson, U. Review of Remote Sensing-Based Methods to Assess Soil Salinity. In Remote Sensing of Soil Salinization: Impact on Land Management; Metternicht, G., Zinck, J.A., Eds.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2009; pp. 39–60. [Google Scholar]
- Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil reflectance. In Manual of Remote Sensing: Remote Sensing for Earth Sciences, 3rd ed.; Rencz, A.N., Ryerson, R.A., Eds.; John Wiley & Son Inc.: New York, NY, USA, 1999; pp. 111–187. [Google Scholar]
- Wang, J.; Ding, J.; Abulimiti, A.; Cai, L. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ 2018, 6, e4703. [Google Scholar] [CrossRef] [Green Version]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat-8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 425. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Weng, Y.; Tao, J. Towards decadal soil salinity mapping using Landsat time series data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 32–41. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Hameid, N.; Tashtoush, F. Salt-Affected Soil Mapping in an Arid Environment using Semi-Empirical Model and Landsat-OLI Data. Adv. Remote Sens. 2017, 6, 260–291. [Google Scholar] [CrossRef] [Green Version]
- Zinck, J.A.; Metternicht, G. Soil Salinity and Salinization Hazard. In Remote Sensing of Soil Salinization: Impact on Land Management; Metternicht, G., Zinck, J.A., Eds.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2009; pp. 3–20. [Google Scholar]
- Metternicht, G.I.; Zinck, J.A. Spatial discrimination of salt- and sodium-affected soil surfaces. Int. J. Remote Sens. 1997, 18, 2571–2586. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Daliakopoulos, I.N.; Panagea, L.S.; Tsanis, I.K. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geo-Cart. Int. 2016, 33, 321–338. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slight and Moderate Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of ALI (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sens. 2015, 7, 488–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.T.; Zeng, S.L.; Gao, Y.; Ouyang, Z.T.; Li, B.; Fang, C.M.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecol. Indic. 2016, 70, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Dehaan, R.; Taylor, G.R. Image-derived spectral endmembers as indicators of salinization. Int. J. Remote Sens. 2003, 24, 775–794. [Google Scholar] [CrossRef]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, Q.; Liu, H.; Shu, L. Soil salinity development in the Yellow River Deltain relation to ground water dynamics. Land Degrad. Dev. 2012, 23, 175–189. [Google Scholar] [CrossRef]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital Mapping of Soil Properties Using Multivariate Statistical Analysis and ASTER Data in an Arid Region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef] [Green Version]
- Farifteh, J.; van der Meer, F.; van der Meijde, M.; Atzberger, C. Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma 2007, 145, 196–206. [Google Scholar] [CrossRef]
- Ghosh, G.; Kumar, S.; Saha, S.K. Hyperspectral Satellite Data in Mapping Salt-Affected Soils Using Linear Spectral Unmixing Analysis. J. Indian Soc. Remote Sens. 2012, 40, 129–136. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Muhaimeed, A.S.; Al-Shafie, W.M.; Fadhil, A.M.; Al-Quraishi, A.M.F.; Nangia, V.; Zhu, M.; Liu, G. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Buces, N.; Siebe, C.; Cram, S.; Palacio, J. Mapping Soil Salinity Using a Combined Spectral Res- ponse Index for Bare Soil and Vegetation: A Case Study in the Former Lake Texcoco, Mexico. J. Arid Environ. 2006, 65, 644–667. [Google Scholar] [CrossRef]
- El-Harti, A.; Lhissoua, R.; Chokmani, K.; Ouzemou, J.; Hassouna, M.; Bachaouia, E.M.; El-Ghmari, A. Spatiotemporal Monitoring of Soil Salinization in Irrigated Tadla Plain (Morocco) using Satellite Spectral Indices. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 64–73. [Google Scholar] [CrossRef]
- Analytical Spectral Devices. Technical Guide, 4th ed.; ASD Inc.: Boulder, CO, USA, 1999; Available online: http://www.asdi.com/products-spectroradiometers.asp (accessed on 30 September 2015).
- Teillet, P.M.; Santer, R. Terrain Elevation and Sensor Altitude Dependence in a Semi-Analytical Atmospheric Code. Can. J. Remote Sens. 1991, 17, 36–44. [Google Scholar]
- Al-Sarawi, M.; El-Baz, F.; Koch, M. Geomorphologic Controls on Surface Deposits of Kuwait as Depicted in Satellite Images. Kuwait J. Sci. Eng. 2006, 33, 123–154. [Google Scholar]
- Al-Sarawi, M. Surface Geomorphology of Kuwait. Geo. J. 1995, 35, 493–503. [Google Scholar] [CrossRef]
- Al-Sarawi, M. Introduction of Geomorphologic Provinces in Kuwait’s Desert Using Multi-Source and Multi-Data Satellite Data. In Proceedings of the Eleventh Thematic Conference and workshops on Applied Geological Remote Sensing, Las Vegas, NV, USA, 27–29 February1996; pp. 536–545. [Google Scholar]
- Al-Hurban, A.; El-Gamily, H. Geo-Historical and Geomorphological Evolution of the Sabkhas and Ridges at the Al-Khiran Area, State of Kuwait. J. Geogr. Inf. Syst. 2013, 5, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Milton, D. Geology of the Arabian Peninsula, Kuwait; Geological Survey Professional Paper 560-F; United State Government Printing Office: Washington, DC, USA, 1967; 14p.
- Omar, S.; Shahid, S.A. Reconnaissance Soil Survey for the State of Kuwait. In Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources; Shahid, S., Taha, F.K., Abdelfattah, M.A., Eds.; Springer Science and Business Media: Dordrecht, The Netherlands, 2013; pp. 85–107. [Google Scholar]
- USDA. Soil Taxonomy: A basic System of Soil Classification for making and Interpreting Soil Surveys; United States Department of Agriculture: Washington, DC, USA, 1999.
- USDA. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 5.0; Burt, R., Staff, S.S., Eds.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Jackson, R.D.; Pinter, P.J.; Paul, J.; Reginato, R.J.; Robert, J.; Idso, S.B. Hand-Held Radiometry; Agricultural Reviews and Manuals, ARM-W-19; U.S. Department of Agriculture Science and Education Administration: Phoenix, AZ, USA, 1980.
- Sandmeier, S.; Muller, C.; Hosgood, B.; Andreoli, G. Sensitivity Analysis and quality Assessment of Laboratory BRDF Data. Remote Sens. Environ. 1998, 64, 176–191. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245–246, 112–124. [Google Scholar] [CrossRef]
- Bannari, A.; Teillet, P.M.; Richardson, G. Nécessité de l’étalonnage radiométrique et standardisation des données de télédétection. J. Can. Remote Sen. 1999, 25, 45–59. [Google Scholar] [CrossRef]
- Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of Spectral, Spatial, and Radiometric Characteristics on Remote Sensing Vegetation Indices of Forested Regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Inter-calibration of vegetation indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Computationally inexpensive Landsat 8 operational land imager (OLI) pan-sharpening. Remote Sens. 2016, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 255, 127–147. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Wulder, M.; Loveland, T.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [Google Scholar] [CrossRef] [Green Version]
- NASA. Landsat-8 Instruments. 2014. Available online: http://www.nasa.gov/mission_pages/landsat/spacecraft/index.html (accessed on 10 September 2019).
- Knight, E.J.; Kvaran, G. Landsat-8 Operational Land Imager design, characterization, and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef] [Green Version]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2 calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Omari, K.; Fedosejev, G.; Teillet, P.M. Using Getis Statistic for the Uniformity Characterization of Land Test Sites Used for Radiometric Calibration of Earth Observation Sensors. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2918–2926. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-Orbit Radiometric Characterization of OLI (Landsat-8) for Applications in Aquatic Remote Sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- PCI-Geomatica. Using PCI Software; PCI-Geomatica: Richmond Hill, ON, Canada, 2018; 540p. [Google Scholar]
- Teillet, P.M. An Algorithm for the Radiometric and Atmospheric Correction of AVHRR Data in the Solar Reflective Channels. Remote Sens. Environ. 1992, 41, 185–195. [Google Scholar] [CrossRef]
- Fallah Shamsi, S.R.; Zare, S.; Abtahi, S.A. Soil salinity characteristics using moderate resolution imaging spectroradiometer (MODIS) images and statistical analysis. Arch. Agron. Soil Sci. 2013, 59, 471–489. [Google Scholar] [CrossRef]
- Bannari, A.; Shahid, S.A.; El-Battay, A.; Alshankiti, A.; Hameid, N.A.; Tashtoush, F. Potential of WorldView-3 data for Soil Salinity Modeling and Mapping in Precision Agriculture Context. In Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS-17, Fort Worth, TX, USA, 23–28 July 2017; pp. 1585–1588. [Google Scholar]
- El-Battay, A.; Bannari, A.; Hameid, N.A.; Abahussain, A.A. Comparative Study among Different Semi-Empirical Models for Soil Salinity Prediction in in Arid Environment Using OLI. Adv. Remote Sens. 2017, 6, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil Salinity Modeling and Mapping Using Remote Sensing and GIS: The Case of Wonji Sugar Cane Irrigation Farms, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Al-Shafie, W.M.; Mhaimeed, A.S.; Ziadat, F.; Nangia, V.; Payne, W.B. Soil Salinity Mapping by Multi-scale Remote Sensing in Mesopotamia, Iraq. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4442–4452. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.-L. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Hawari, F. Spectroscopy of evaporates. Per Miner. 2002, 71, 191–200. [Google Scholar]
- Bannari, A.; Huete, A.R.; Morin, D.; Zagolski, F. Effets de la Couleur et de la Brillance du Sol sur les Indices de Végétation. Int. J. Remote Sens. 1996, 17, 1885–1906. [Google Scholar] [CrossRef]
Sample | Salinity Classes | EC-Lab dS.m−1 | pHs | Ca2+ | K+ | Mg2+ | Na+ | Cl− | HCO3− | CaCO3(%) | SAR (mmoles/l)0.5 |
---|---|---|---|---|---|---|---|---|---|---|---|
meq/L | |||||||||||
A | Non-Saline | 2.4 | 7.7 | 18.9 | 0.6 | 3.6 | 5.5 | 8 | 4 | 26.5 | 1.6 |
B | Low | 6.7 | 7.7 | 67 | 2.3 | 12 | 23 | 38 | 9.1 | 19 | 3.7 |
C | Moderate | 11.8 | 7.7 | 45 | 7 | 14 | 49 | 70 | 10 | 26 | 9.1 |
D | High | 38.4 | 7.3 | 146 | 310 | 100 | 258 | 350 | 6 | 12.5 | 23.3 |
E | Very High | 48.8 | 7.4 | 78 | 15 | 19 | 325 | 590 | 4 | 19.5 | 46.8 |
F | Extreme | 400.3 | 7.0 | 230.5 | 97 | 1118 | 3615 | 3932 | 6.6 | 22 | 139.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ali, Z.M.; Bannari, A.; Rhinane, H.; El-Battay, A.; Shahid, S.A.; Hameid, N. Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data. Remote Sens. 2021, 13, 494. https://doi.org/10.3390/rs13030494
Al-Ali ZM, Bannari A, Rhinane H, El-Battay A, Shahid SA, Hameid N. Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data. Remote Sensing. 2021; 13(3):494. https://doi.org/10.3390/rs13030494
Chicago/Turabian StyleAl-Ali, Z. M., A. Bannari, H. Rhinane, A. El-Battay, S. A. Shahid, and N. Hameid. 2021. "Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data" Remote Sensing 13, no. 3: 494. https://doi.org/10.3390/rs13030494
APA StyleAl-Ali, Z. M., Bannari, A., Rhinane, H., El-Battay, A., Shahid, S. A., & Hameid, N. (2021). Validation and Comparison of Physical Models for Soil Salinity Mapping over an Arid Landscape Using Spectral Reflectance Measurements and Landsat-OLI Data. Remote Sensing, 13(3), 494. https://doi.org/10.3390/rs13030494