Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025)
"> Figure 1
<p>Locations of soil moisture meteorological stations and six vegetation zones.</p> "> Figure 2
<p>Flowchart of the soil moisture distribution of Mongolia based on satellite images.</p> "> Figure 3
<p>Actual, fitted, and residual values of the multiple regression model.</p> "> Figure 4
<p>Spatial distribution of soil moisture content from the model (<span class="html-italic">SM<sub>MOD</sub></span>) (averaged monthly from 2010 to 2020).</p> "> Figure 5
<p>Scatter diagram of SMAP and SM-MOD with SM measurements from the meteorological stations for different depths from May to August of 2015–2020 over the study area: (<b>a</b>) SMAP and SMC from the meteorological stations at 0–20 cm depth; (<b>b</b>) SMAP and SMC from the meteorological stations at 0–50 cm depth; (<b>c</b>) SM-MOD and SMC from the meteorological stations at 0–20 cm depth; (<b>d</b>) SM-MOD and SMC from the meteorological stations at 0–50 cm depth.</p> "> Figure 6
<p>Comparison between monthly precipitation (mm), temperature (°C), and SM-MOD (m<sup>3</sup>/m<sup>3</sup>) from January 2010 to December 2019 in Mongolia.</p> "> Figure 7
<p>Scatter diagram of the monthly SM-MOD (m<sup>3</sup>/m<sup>3</sup>), monthly temperature (°C), and monthly precipitation (mm) from 2010 to 2020 over the study area: (<b>a</b>) SM-MOD and SM-MOD; (<b>b</b>) SM-MOD and temperature (°C); (<b>c</b>) SM-MOD and precipitation (mm).</p> "> Figure 8
<p>Comparison of the SM-MOD and crop yield information: (<b>a</b>) yearly crop yield (ton/ha) and averaged SM-MOD from May to September (2010–2019); (<b>b</b>) scatter diagram of SM-MOD and crop yield information.</p> "> Figure 9
<p>Correlogram of residuals squared of the autocorrelation function (ACF) and partial autocorrelation function (PACF).</p> "> Figure 10
<p>Soil moisture forecasting from the ARIMA model (m<sup>3</sup>/m<sup>3</sup>).</p> "> Figure 11
<p>Comparison graph of the real soil moisture and soil moisture forecasting.</p> "> Figure 12
<p>Predicting soil moisture trend until December 2025.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Preprocessing
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. SMAP
2.2.2. MODIS
2.3. CRU Data and Meteorological Data
2.4. Crop Yield Statistical Data
3. Methodology
3.1. Multiple Linear Regression—SM-MOD
3.2. ARIMA Model
3.3. Model Validation
4. Results
4.1. SM-MOD—Multiple Linear Regression Model
4.2. Comparison between MLR Model and SMC from the Meteorological Station
4.3. Comparison between SM-MOD and CRU Data
4.4. Comparison between SM-MOD and Crop Yield
4.5. ARIMA Model of Soil Moisture
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.; Wu, P.; Zhao, X.; Wang, J.; Shi, Y. Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management. Land Degrad. Dev. 2014, 25, 163–172. [Google Scholar] [CrossRef]
- Deryng, D.; Sacks, W.J.; Barford, C.C.; Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Xu, X.; Liu, T.; Duan, Y.; Zhao, Y. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecol. Indic. 2018, 95, 320–330. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agric. Forest Meteorol. 2017, 237, 257–269. [Google Scholar] [CrossRef]
- Natsagdorj, E.; Tsolmon, R.; Martin, K.; Batchuluun, T.; Chimgee, D.; Oyunbileg., T.; Ulam-Orgikh, D. An integrated methodology for soil moisture analysis using multispectral data in Mongolia. Geo-Spat. Inf. Sci. 2017, 20, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh-Bajgiran, P.; Berg, A. Soil moisture retrievals using optical/TIR methods. In Satellite Soil Moisture Retrieval: Techniques and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 47–72. [Google Scholar]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Loew, A. Recent Advances in Soil Moisture Estimation from Remote Sensing. Water 2017, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Lee, Y.; Cho, Y.; Kim, S. A Study of Spatial Soil Moisture Estimation Using a Multiple Linear Regression Model and MODIS Land Surface Temperature Data Corrected by Conditional Merging. Remote Sens. 2017, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Vani, V.; Pavan Kumar, K.; Ravibabu, M.V. Temperature and vegetation indices based surface soil moisture estimation: A remote sensing data approach. In Springer Series in Geomechanics and Geoengineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 281–289. [Google Scholar]
- Hong, Z.; Zhang, W.; Yu, C.; Zhang, D.; Li, L.; Meng, L. SWCTI: Surface Water Content Temperature Index for Assessment of Surface Soil Moisture Status. Sensors 2018, 18, 2875. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; Rosnay, P.D.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A Review of the Applications of ASCAT Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; Yueh, S.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sens. 2017, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J.; et al. Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 489–502. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, K.S.; Bi, H.; Chen, Q. A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over United States and Europe Using Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4929–4940. [Google Scholar] [CrossRef]
- Nemani, R.; Running, S. Land cover characterization using multitemporal Red, Near-Ir, and Thermal-Ir data from NOAA/AVHRR. Ecol. Appl. 1997, 7, 79–90. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Chae, S.-H.; Park, S.-H.; Lee, M.-J. A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image. Korean J. Remote Sens. 2017, 33, 931–946. [Google Scholar] [CrossRef]
- Saha, A.; Patil, M.; Goyal, V.C.; Rathore, D.S. Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques. Proceedings 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Dandridge, C.; Fang, B.; Lakshmi, V. Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. Water 2019, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Leary, N. Climate Change and Vulnerability and Adaptation: Two Volume Set; Routledge: Abingdon, UK, 2008. [Google Scholar]
- Yatagai, A.; Yasunari, T. Interannual Variations of Summer Precipitation in the Arid/semi-arid Regions in China and Mongolia: Their Regionality and Relation to the Asian Summer Monsoon. J. Meteorol. Soc. Jpn. Ser. II 1995, 73, 909–923. [Google Scholar] [CrossRef] [Green Version]
- Nandintsetseg, B.; Shinoda, M. Seasonal change of soil moisture in Mongolia: Its climatology and modelling. Int. J. Clim. 2011, 31, 1143–1152. [Google Scholar] [CrossRef]
- Shinoda, M.; Nandintsetseg, B. Soil moisture and vegetation memories in a cold, arid climate. Glob. Planet. Chang. 2011, 79, 110–117. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis Forecasting and Gontrol; John Willey & Sons Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Singh, S.; Kaur, S.; Kumar, P. Forecasting Soil Moisture Based on Evaluation of Time Series Analysis. Lect. Notes Electr. Eng. 2020, 609, 145–156. [Google Scholar] [CrossRef]
- Tian, M.; Wang, P.; Khan, J. Drought Forecasting with Vegetation Temperature Condition Index Using ARIMA Models in the Guanzhong Plain. Remote Sens. 2016, 8, 690. [Google Scholar] [CrossRef] [Green Version]
- Karthika, M.; Thirunavukkarasu, V. Forecasting of meteorological drought using ARIMA model. Indian J. Agric. Res. 2017, 51, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Wang, P.X.; Zhang, S.Y.; Zhu, D.H. Drought forecasting based on the remote sensing data using ARIMA models. Math. Comput. Model. 2010, 51, 1398–1403. [Google Scholar] [CrossRef]
- Mishra, A.K.; Desai, V.R. Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 2005, 19, 326–339. [Google Scholar] [CrossRef]
- Otgonbayar, M.; Atzberger, C.; Chambers, J.; Amarsaikhan, D.; Böck, S.; Tsogtbayar, J. Land Suitability Evaluation for Agricultural Cropland in Mongolia Using the Spatial MCDM Method and AHP Based GIS. J. Geosci. Environ. Prot. 2017, 5, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Nandintsetseg, B.; Greene, J.S.; Goulden, C.E. Trends in extreme daily precipitation and temperature near lake Hövsgöl, Mongolia. Int. J. Clim. 2007, 27, 341–347. [Google Scholar] [CrossRef]
- Batima, P.; Natsagdorj, L.; Gombluudev, P.; Erdenetsetseg, B. Observed climate change in Mongolia. Assess. Imp. Adapt. Clim. Chang. Work Pap. 2005, 12, 1–26. [Google Scholar]
- Natsagdorj, E.; Renchin, T. Determination of moisture in Mongolia using remotely sensned data. In Proceedings of the Asian Conference on Remote Sensing, Hanoi, Vietnam, 1–5 November 2010; p. 921. [Google Scholar]
- Yunatov, A.A. Vegetation Map of the Mongolian Peoples’ Republic 1:1,500,000. Akad. Nauk SSSR Ai MNP 1979. [Google Scholar]
- Entekhabi, D.; Njoku, E.G.; O’Neil, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- O’Neill, J.C.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; NASA National Snow and Ice Data Center Distributed Active Archive Center. SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 3. 2019. Available online: https://nsidc.org/data/SPL3SMP_E/versions/3 (accessed on 7 September 2020).
- Zhang, J.; Roy, D.; Devadiga, S.; Zheng, M. Anomaly detection in MODIS land products via time series analysis. Geo-Spat. Inf. Sci. 2007, 10, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Didan, K.; NASA EOSDIS Land Processes DAAC. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1 km SIN Grid V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 8 June 2020).
- Hulley, G.; Wan, Z.; Hook, S.; NASA EOSDIS Land Processes DAAC. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod11a2v006/ (accessed on 30 May 2020).
- AppEEARS Team; NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC); USGS/Earth Resources Observation and Science (EROS) Center. Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). 2020. Available online: https://lpdaacsvc.cr.usgs.gov/appeears/ (accessed on 1 June 2020).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Natsagdorj, E.; Renchin, T.; de Maeyer, P.; Dari, C.; Tseveen, B. Long-term soil moisture content estimation using satellite and climate data in agricultural area of Mongolia. Geocarto Int. 2019, 34, 722–734. [Google Scholar] [CrossRef]
- NSO. Agriculture. 2020. Available online: http://www.1212.mn/Stat.aspx?LIST_ID=976_L10_2&type=tables (accessed on 7 September 2020).
- Weisberg, S. Applied Linear Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Murray, L.; Nguyen, H.; Lee, Y.F.; Remmenga, M.D.; Smith, D.W. Models with variance inflation factors in regression models with dummy variables. In Proceedings of the Conference on Applied Statistics in Agriculture Kansas State University, Manhattan, KS, USA, 29–30 April 2012; pp. 161–177. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E. Multivariable modeling strategies. In Regression Modeling Strategies; Springer: Cham, Switzerland, 2001; pp. 53–85. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control.; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Box, G.E.P.; Pierce, D.A. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 1970, 65, 1509–1526. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; MacGregor, J.F. Some Recent Advances in Forecasting and Control. Appl. Stat. 1974, 23, 158. [Google Scholar] [CrossRef]
- Rahman, A.; Hasan, M.M. Modeling and Forecasting of Carbon Dioxide Emissions in Bangladesh Using Autoregressive Integrated Moving Average (ARIMA) Models. Open J. Stat. 2017, 7, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Curtef, V. Application of Time Series Models for Streamflow Forecasting. Civ. Environ. Res. 2017, 9, 56–63. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef] [Green Version]
- Puth, M.T.; Neuhäuser, M.; Ruxton, G.D. Effective use of Pearson’s product-moment correlation coefficient. Anim. Behav. 2014, 93, 183–189. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, T. Investigating the presumed causal links between drought and dzud in Mongolia. Nat. Hazards 2018, 92, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Song, X.; Leng, P.; Wang, Y.; Hao, Y.; Wang, Y. A comparison of two methods for estimating surface soil moisture based on the triangle model using optical/thermal infrared remote sensing over the source area of the Yellow River. Int. J. Remote Sens. 2019, 40, 2120–2137. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; Wang, A.; de Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef] [Green Version]
Aimag Name | Station Name | Vegetation Zones | Latitude (° N) | Longitude (° E) | Elevation (m) |
---|---|---|---|---|---|
Arkhangai | Tuvshruulekh | Forest steppe | 47°23′12.9″ N | 101°54′30.9″ E | 1619 |
Khuvsgul | Tarialan | Forest steppe | 49°36′32.98″ N | 101°59′4.52″ E | 1218 |
Selenge | Tsagaannuur | Forest steppe | 50°6′37.83″ N | 105°27′7.28″ E | 786 |
Selenge | Eruu | Forest steppe | 49°44′56.52″ N | 106°39′40.48″ E | 673 |
Selenge | Baruunkharaa | Forest steppe | 48°54′47.21″ N | 106°5′23.11″ E | 811 |
Selenge | Orkhon | Steppe | 49°8′37.57″ N | 105°24′8.44″ E | 756 |
Selenge | Orkhontuul | Steppe | 48°50′7.6″ N | 104°48′23.09″ E | 831 |
Selenge | Zuunkharaa | Forest steppe | 48°51′37.86″ N | 106°26′35.31″ E | 883 |
Bulgan | Ingettolgoi | Forest steppe | 49°27′33.8″ N | 103°59′5.20″ E | 763 |
Bulgan | Bulgan | Forest steppe | 48°49′5.39″ N | 103°31′8.18″ E | 1221 |
Dornod | Onon | Steppe | 49°6′51.42″ N | 112°39′29.35″ E | 894 |
Dornod | Choibalsan | Steppe | 48°4′53.16″ N | 114°32′16.21″ E | 747 |
Dornod | Khalkhgol | Steppe | 47°37′48.86″ N | 118°37′20.21″ E | 987 |
Uvs | Baruunturuun | Steppe | 49°39′31.10″ N | 94°24′14.62″ E | 1232 |
Uvurkhangai | Kharkhorin | Forest steppe | 47°11′40.99″ N | 102°49′47.78″ E | 1480 |
Tuv | Erdenesant | Steppe | 47°20′0.35″ N | 104°29′34.13″ E | 1364 |
Tuv | Ugtaal | Steppe | 48°15′29.19″ N | 105°24′19.01″ E | 1161 |
Tuv | Jargalant | Forest steppe | 48°31′35.61″ N | 105°52′50.67″ E | 1015 |
Tuv | Bayanchandmani | Forest steppe | 48°13′37.57″ N | 106°17′2.89″ E | 1255 |
Tuv | Bornuur | Forest steppe | 48°28′7.56″ N | 106°15′37.16″ E | 1023 |
Khentii | Gurvanbayan | Steppe | 48°11′4.95″ N | 110°19′22.03″ E | 1207 |
Khentii | Undurkhaan | Steppe | 47°18′29.62″ N | 110°37′28.29″ E | 1035 |
Sukhbaatar | Baruun-Urt | Steppe | 46°40′21.92″ N | 113°16′57.07″ E | 981 |
Variable | Unit | Min | Max | Mean | SD |
---|---|---|---|---|---|
SMAP (dependent) | m3/m3 | 0.037 | 0.157 | 0.090 | 0.024 |
LST (independent) | Celsius | −19.065 | 39.902 | 15.680 | 18.469 |
NDVI (independent) | 0.024 | 0.381 | 0.186 | 0.097 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. | Collinearity Statistics | |
---|---|---|---|---|---|---|
Tolerance | VIF | |||||
Intercept | 0.044 | 0.003721 | 11.79743 | 0.0000 | ||
NDVI | 0.289 | 0.027357 | 10.56239 | 0.0000 | 0.300 | 3.336 |
LST (Celsius) | −0.0005 | 0.000144 | −3.499165 | 0.0009 | 0.247 | 4.041 |
R-squared | 0.780878 | Adjusted R-squared | 0.773322 | Mean dependent variable | 0.089744 | |
SD dependent variable | 0.023754 | SE of regression | 0.011310 | Akaike info. criterion | −6.078392 | |
Prob (F-statistic) | 0.000000 |
(a) | ||
SMAP (m3/m3) | SMC/0–20 cm/(m3/m3) | SMC/0–50 cm/(m3/m3) |
p-values (Pearson) | <0.0001 | 0.005 |
Coefficients of determination (Pearson) | 0.078 | 0.087 |
Correlation (Pearson) | 0.279 ** | 0.181 ** |
RMSE | 0.094 | 0.098 |
Bias | 0.0016 | 0.0021 |
Confidence intervals (95%) | (0.194, 0.359) | (0.094, 0.266) |
(b) | ||
SM-MOD (m3/m3) | SMC/0–20 cm/(m3/m3) | SMC/0–50 cm/(m3/m3) |
p-values (Pearson) | <0.0001 | 0.005 |
Coefficients of determination (Pearson) | 0.037 | 0.016 |
Correlation (Pearson) | 0.191 ** | 0.126 ** |
RMSE | 0.090 | 0.091 |
Bias | 0.0016 | 0.0020 |
Confidence intervals (95%) | (0.104, 0.276) | (0.038, 0.213) |
Variables | SM-MOD (m3/m3) | Temperature, °C | Precipitation, mm |
---|---|---|---|
Confidence intervals (95%)/lower bound | 1 | 0.728 | 0.759 |
Confidence intervals (95%)/upper bound | 1 | 0.858 | 0.876 |
Correlation matrix (Pearson) | 1 | 0.802 | 0.826 |
p-values (Pearson) | 0 | <0.0001 | <0.0001 |
Bias | 0 | 0.025 | 0.026 |
Variables | SM-MOD (m3/m3) | Crop Yield (ton/ha) |
---|---|---|
Coefficients of determination (Pearson) | 1 | 0.697 |
Correlation matrix (Pearson) | 1 | 0.835 |
p-values (Pearson) | 0 | 0.003 |
Bias | 0 | −0.005 |
Dependent Variable: DLOG (SM-MOD) | Method: Least Squares | ||||
---|---|---|---|---|---|
Sample: 2010M02–2020M05 | Included Observations: 124 | ||||
Failure to Improve Objective (Nonzero Gradients) after 90 Iterations | |||||
Coefficient Covariance Computed Using Outer Product of Gradients | |||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. | |
Constant (c) | 0.000560 | 0.116782 | 0.004795 | 0.9962 | |
AR (12) | 0.999321 | 0.000118 | 8501.412 | 0.0000 | |
AR (1) | 0.000625 | 0.000160 | 3.899161 | 0.0002 | |
MA (12) | −0.950003 | 0.020568 | −46.18744 | 0.0000 | |
SIGMASQ | 0.003390 | 0.000392 | 8.655254 | 0.0000 | |
R-squared | 0.822436 | Mean dependent variable | 0.002194 | ||
Adjusted R-squared | 0.816468 | SD dependent variable | 0.138724 | ||
SE of regression | 0.059430 | Akaike info. criterion | −2.485006 | ||
Sum squared residuals | 0.420300 | Schwarz criterion | −2.371285 | ||
Log likelihood | 159.0703 | Hannan‒Quinn criterion | −2.438809 | ||
F-statistic | 137.7955 | Durbin‒Watson statistic | 2.030050 | ||
Prob (F-statistic) | 0.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsagdorj, E.; Renchin, T.; Maeyer, P.D.; Darkhijav, B. Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025). Remote Sens. 2021, 13, 347. https://doi.org/10.3390/rs13030347
Natsagdorj E, Renchin T, Maeyer PD, Darkhijav B. Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025). Remote Sensing. 2021; 13(3):347. https://doi.org/10.3390/rs13030347
Chicago/Turabian StyleNatsagdorj, Enkhjargal, Tsolmon Renchin, Philippe De Maeyer, and Bayanjargal Darkhijav. 2021. "Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025)" Remote Sensing 13, no. 3: 347. https://doi.org/10.3390/rs13030347
APA StyleNatsagdorj, E., Renchin, T., Maeyer, P. D., & Darkhijav, B. (2021). Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025). Remote Sensing, 13(3), 347. https://doi.org/10.3390/rs13030347