SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River
<p>Location of the study area. (<b>a</b>) Location of Podensac on the Garonne River; (<b>b</b>) the Gironde/Garonne/Dordogne estuary in southwest France; (<b>c</b>) drone image of the Garonne River taken by V. Marie (EPOC), showing the first waves of the tidal bore, its direction of propagation, and the platform location; (<b>d</b>) photo of the Garonne River from the platform with the GNSS antenna installed. The narrowness of the river and the vegetation on riverbanks are visible in both images.</p> "> Figure 2
<p>1-Hz resampled pressure water level time series of the Garonne River at Podensac. (<b>a</b>) During the GNSS-R SNR acquisition with red rectangle indicating tidal bores; (<b>b</b>) during four consecutive tide periods. These figures are representative of the entire pressure water level time series and do not show the tidal oscillations over a longer period, as the acquisition was performed during spring tides only when both the tidal range is maximum and tidal bores can form.</p> "> Figure 3
<p>Flowchart of the dynamic SNR method with our improvements adapted from [<a href="#B29-remotesensing-13-01856" class="html-bibr">29</a>]. (<b>a</b>) Processing chain with the addition of a two-step filtering of the dominant frequencies (in orange); (<b>b</b>,<b>c</b>) respective examples of a single-peak output and a multipeak output from LSP for the same satellite track (G01). Red line materializes the level of filtering which depends on parameter <span class="html-italic">k</span> (here <span class="html-italic">k</span> = 0.6), and <math display="inline"><semantics> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> </semantics></math> ~100 Hz.</p> "> Figure 4
<p>Dominant frequencies extracted from GPS (green) and GLONASS (orange) satellites using the LSP, and river heights inverted with the dynamic SNR method (blue) compared to pressure water levels (red). (<b>a</b>,<b>b</b>) <math display="inline"><semantics> <mrow> <mo> </mo> <mover accent="true"> <mi>f</mi> <mo>˜</mo> </mover> </mrow> </semantics></math> and <span class="html-italic">h</span> from raw LSP output respectively; (<b>c</b>) frequencies filtered out after multipeak rejection with parameter <span class="html-italic">k</span> = 0.6 and iterative LSE; (<b>d</b>) concordant time series of water levels estimated with iterative LSE. Grey areas are masks due to tidal bore occurrence (17 h) and data gaps (21–22 h).</p> "> Figure 5
<p>Final results using the adapted dynamic SNR inversion. (<b>a</b>) Comparison of <span class="html-italic">h</span> calculated using L1 only (orange), L2 only (green), and L1 + L2 + L5 (blue) frequencies for GPS and GLONASS satellites with pressure water levels (red); (<b>b</b>) output <math display="inline"><semantics> <mover accent="true"> <mi>h</mi> <mo>˙</mo> </mover> </semantics></math> with L1 + L2 + L5 bands; (<b>c</b>) number of GPS and GLONASS satellites for the calculation of <span class="html-italic">h</span> and <math display="inline"><semantics> <mover accent="true"> <mi>h</mi> <mo>˙</mo> </mover> </semantics></math>. The value of <math display="inline"><semantics> <mover accent="true"> <mi>h</mi> <mo>˙</mo> </mover> </semantics></math> was derived from the relative antenna height <span class="html-italic">h</span>, thus it was negative during rising tides as the relative antenna height decreased.</p> "> Figure 6
<p>Statistical results depending on the number of satellites and the vertical velocity. (<b>a</b>) R and ubRMSD computed according to the number of satellites for the inversion of <span class="html-italic">h</span> and <math display="inline"><semantics> <mover accent="true"> <mi>h</mi> <mo>˙</mo> </mover> </semantics></math>; (<b>b</b>) Idem according to the vertical velocity class (intervals computed with range 1 × 10<sup>−4</sup> m.s<sup>−1</sup>).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. GNSS-IR Data
2.3. Validation: Pressure Data
3. Methods
3.1. Preprocessing
3.2. Dynamic SNR Inversion
3.3. Improvements on the Dynamic SNR Approach
3.4. Validation
4. Results
4.1. Preliminary Filtering of the Dominant Frequencies
4.2. Comparison Between L1, L2 and L5 GNSS Frequencies
4.3. Influence of the Number of Satellites and Elevation Rate in the LSE Inversion
5. Discussion
5.1. Retrieving Water Heights in Rivers with GNSS-R
5.2. Influence of the GNSS Band, the Number of Satellites Visible and the Vertical Velocity
5.3. The Dynamic SNR Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Wickert, J.; Cardellach, E.; Martin-Neira, M.; Bandeiras, J.; Bertino, L.; Andersen, O.B.; Camps, A.; Catarino, N.; Chapron, B.; Fabra, F.; et al. GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4552–4581. [Google Scholar] [CrossRef] [Green Version]
- Lestarquit, L.; Peyrezabes, M.; Darrozes, J.; Motte, E.; Roussel, N.; Wautelet, G.; Frappart, F.; Ramillien, G.; Biancale, R.; Zribi, M. Reflectometry With an Open-Source Software GNSS Receiver: Use Case With Carrier Phase Altimetry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4843–4853. [Google Scholar] [CrossRef]
- Hall, C.D.; Cordey, R.A. Multistatic Scatterometry. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Edinburgh, UK, 12–16 September 1988; pp. 561–562. [Google Scholar]
- Martin-Neira, M. A Passive Reflectometry and Interferometry System (PARIS): Application to Ocean Altimetry. ESA J. 1993, 17, 331–335. [Google Scholar]
- Kavak, A.; Vogel, W.J.; Xu, G. Using GPS to Measure Ground Complex Permittivity. Electron. Lett. 1998, 34, 254–255. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies. Geophys. Res. Lett. 2008, 35, L24405. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Camps, A.; Vall-Llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.; Valencia, E.; Martinez-Fernandez, J.; Baroncini-Turricchia, G.; Perez-Gutierrez, C.; et al. Land Geophysical Parameters Retrieval Using the Interference Pattern GNSS-R Technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 71–84. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects of Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval Algorithm for Soil Moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Baup, F.; Lestarquit, L.; Ha, M.C. Detection of Soil Moisture Variations Using GPS and GLONASS SNR Data for Elevation Angles Ranging from 2° to 70°. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4781–4794. [Google Scholar] [CrossRef]
- Zhang, S.; Calvet, J.C.; Darrozes, J.; Roussel, N.; Frappart, F.; Bouhours, G. Deriving Surface Soil Moisture from Reflected GNSS Signal Observations from a Grassland Site in Southwestern France. Hydrol. Earth Syst. Sci. 2018, 22, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can We Measure Snow Depth with GPS Receivers? Geophys. Res. Lett. 2009, 36, L17502. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Aguasca, A.; Valencia, E.; Bosch-Lluis, X.; Camps, A.; Ramos-Perez, I.; Park, H.; Vall-llossera, M. Snow Thickness Monitoring Using GNSS Measurements. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1109–1113. [Google Scholar] [CrossRef]
- Small, E.E.; Larson, K.M.; Braun, J.J. Sensing Vegetation Growth with Reflected GPS Signals. Geophys. Res. Lett. 2010, 37, L12401. [Google Scholar] [CrossRef]
- Zhang, S.; Roussel, N.; Boniface, K.; Cuong Ha, M.; Frappart, F.; Darrozes, J.; Baup, F.; Calvet, J.C. Use of Reflected GNSS SNR Data to Retrieve Either Soil Moisture or Vegetation Height from a Wheat Crop. Hydrol. Earth Syst. Sci. 2017, 21, 4767–4784. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.D. Determination of Water Level and Tides Using Interferometric Observations of GPS Signals. J. Atmos. Ocean. Technol. 2000, 17, 1118–1127. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, J.S.; Haas, R. Sea Level Measurements Using Multi-Frequency GPS and GLONASS Observations. EURASIP J. Adv. Signal Process. 2014, 2014, 50. [Google Scholar] [CrossRef] [Green Version]
- Vu, P.L.; Ha, M.C.; Frappart, F.; Darrozes, J.; Ramillien, G.; Dufrechou, G.; Gegout, P.; Morichon, D.; Bonneton, P. Identifying 2010 Xynthia Storm Signature in GNSS-R-Based Tide Records. Remote Sens. 2019, 11, 782. [Google Scholar] [CrossRef] [Green Version]
- Purnell, D.; Gomez, N.; Chan, N.H.; Strandberg, J.; Holland, D.M.; Hobiger, T. Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4419–4428. [Google Scholar] [CrossRef]
- Tabibi, S.; Geremia-Nievinski, F.; Francis, O.; van Dam, T. Tidal Analysis of GNSS Reflectometry Applied for Coastal Sea Level Sensing in Antarctica and Greenland. Remote Sens. Environ. 2020, 248, 111959. [Google Scholar] [CrossRef]
- Geremia-Nievinski, F.; Hobiger, T.; Haas, R.; Liu, W.; Strandberg, J.; Tabibi, S.; Vey, S.; Wickert, J.; Williams, S. SNR-Based GNSS Reflectometry for Coastal Sea-Level Altimetry: Results from the First IAG Inter-Comparison Campaign. J. Geod. 2020, 94, 70. [Google Scholar] [CrossRef]
- Larson, K.M.; Löfgren, J.S.; Haas, R. Coastal Sea Level Measurements Using a Single Geodetic GPS Receiver. Adv. Space Res. 2013, 51, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Beckheinrich, J.; Hirrle, A.; Schon, S.; Beyerle, G.; Semmling, M.; Wickert, J. Water Level Monitoring of the Mekong Delta Using GNSS Reflectometry Technique. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3798–3801. [Google Scholar]
- Tabibi, S.; Francis, O. Can GNSS-R Detect Abrupt Water Level Changes? Remote Sens. 2020, 12, 3614. [Google Scholar] [CrossRef]
- Bonneton, P.; Bonneton, N.; Parisot, J.-P.; Castelle, B. Tidal Bore Dynamics in Funnel-Shaped Estuaries. J. Geophys. Res. Ocean. 2015, 120, 923–941. [Google Scholar] [CrossRef]
- Martins, K.; Bonneton, P.; Frappart, F.; Detandt, G.; Bonneton, N.; Blenkinsopp, C.E. High Frequency Field Measurements of an Undular Bore Using a 2D LiDAR Scanner. Remote Sens. 2017, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Roussel, N.; Darrozes, J.; Bonneton, P.; Bonneton, N.; Detandt, G.; Perosanz, F.; Loyer, S. High Rate GNSS Measurements for Detecting Non-Hydrostatic Surface Wave. Application to Tidal Borein the Garonne River. Eur. J. Remote Sens. 2016, 49, 917–932. [Google Scholar] [CrossRef] [Green Version]
- Roussel, N.; Ramillien, G.; Frappart, F.; Darrozes, J.; Gay, A.; Biancale, R.; Striebig, N.; Hanquiez, V.; Bertin, X.; Allain, D. Sea Level Monitoring and Sea State Estimate Using a Single Geodetic Receiver. Remote Sens. Environ. 2015, 171, 261–277. [Google Scholar] [CrossRef]
- Vu, P.-L.; Frappart, F.; Darrozes, J.; Ha, M.-C.; Dinh, T.-B.-H.; Ramillien, G. Comparison of Water Level Changes in the Mekong River Using Gnss Reflectometry, Satellite Altimetry and in-Situ Tide/River Gauges. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8408–8411. [Google Scholar]
- Bonneton, P.; Filippini, A.G.; Arpaia, L.; Bonneton, N.; Ricchiuto, M. Conditions for Tidal Bore Formation in Convergent Alluvial Estuaries. Estuar. Coast. Shelf Sci. 2016, 172, 121–127. [Google Scholar] [CrossRef]
- Bishop, G.J.; Klobuchar, J.A.; Doherty, P.H. Multipath Effects on the Determination of Absolute Ionospheric Time Delay from GPS Signals. Radio Sci. 1985, 20, 388–396. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Improving GNSS-R Sea Level Determination through Inverse Modeling of SNR Data: GNSS-R INVERSE MODELING. Radio Sci. 2016, 51, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-Gómez, A.; Watson, C.; Gravelle, M.; King, M.; Wöppelmann, G. Levelling Co-Located GNSS and Tide Gauge Stations Using GNSS Reflectometry. J. Geod. 2015, 89, 241–258. [Google Scholar] [CrossRef]
GNSS Bands Used | k | Iterative LSE | Min Number of Satellites | Nh—Number of deTerminations of h | Maximum Error (m) | R (Pearson) | ubRMSD (m) |
---|---|---|---|---|---|---|---|
L1 | 1 | No | / | 738 | 8.37 | 0.69 | 1.57 |
Yes | 2 | 735 | 10.45 | 0.73 | 1.64 | ||
4 | 620 | 10.60 | 0.91 | 0.91 | |||
L1 | 0.90 | No | / | 733 | 3.82 | 0.90 | 0.85 |
Yes | 2 | 730 | 3.34 | 0.96 | 0.54 | ||
4 | 643 | 3.32 | 0.97 | 0.47 | |||
L1 | 0.75 | No | / | 723 | 8.64 | 0.85 | 1.09 |
Yes | 2 | 720 | 8.46 | 0.88 | 0.96 | ||
4 | 606 | 2.93 | 0.97 | 0.44 | |||
L1 | 0.60 | No | / | 715 | 20.64 | 0.83 | 1.19 |
Yes | 2 | 688 | 8.57 | 0.93 | 0.76 | ||
4 | 529 | 1.59 | 0.98 | 0.33 | |||
L1 | 0.50 | No | / | 688 | 4.56 | 0.91 | 0.83 |
Yes | 2 | 660 | 5.28 | 0.93 | 0.72 | ||
4 | 465 | 2.81 | 0.98 | 0.35 | |||
L2 | 0.60 | No | / | 702 | 21.60 | 0.77 | 1.48 |
Yes | 2 | 686 | 12.05 | 0.84 | 1.21 | ||
4 | 476 | 1.59 | 0.99 | 0.32 | |||
L1, L2, L5 | 0.60 | No | / | 742 | 2.38 | 0.95 | 0.62 |
Yes | 2 | 741 | 2.16 | 0.98 | 0.44 | ||
4 | 662 | 2.08 | 0.99 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeiger, P.; Frappart, F.; Darrozes, J.; Roussel, N.; Bonneton, P.; Bonneton, N.; Detandt, G. SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River. Remote Sens. 2021, 13, 1856. https://doi.org/10.3390/rs13091856
Zeiger P, Frappart F, Darrozes J, Roussel N, Bonneton P, Bonneton N, Detandt G. SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River. Remote Sensing. 2021; 13(9):1856. https://doi.org/10.3390/rs13091856
Chicago/Turabian StyleZeiger, Pierre, Frédéric Frappart, José Darrozes, Nicolas Roussel, Philippe Bonneton, Natalie Bonneton, and Guillaume Detandt. 2021. "SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River" Remote Sensing 13, no. 9: 1856. https://doi.org/10.3390/rs13091856
APA StyleZeiger, P., Frappart, F., Darrozes, J., Roussel, N., Bonneton, P., Bonneton, N., & Detandt, G. (2021). SNR-Based Water Height Retrieval in Rivers: Application to High Amplitude Asymmetric Tides in the Garonne River. Remote Sensing, 13(9), 1856. https://doi.org/10.3390/rs13091856