The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania
"> Figure 1
<p>The location of the three church case studies at the level of Bihor County and Romania.</p> "> Figure 2
<p>Schematic diagram of the main methodological stages.</p> "> Figure 3
<p>Methodology of photographic acquisition for the interior and exterior photogrammetry and for obtaining the required panoramic images.</p> "> Figure 4
<p>The methodology for acquiring photographs for the creation of three-dimensional models of the exterior of monuments; (<b>a</b>)—acquisition of photographs via ACRP and TCRP and (<b>b</b>)—acquisition of photographs so as to limit occlusion.</p> "> Figure 5
<p>Quantitative graphical representation of the size of the data sets entered, and the results obtained after each stage of the pre-processing and processing.</p> "> Figure 6
<p>The results obtained during each stage of making the three-dimensional models concerned (with the representation showing the models resulting from the cleaning and optimisation actions that were undertaken specifically to each stage of the construction).</p> "> Figure 7
<p>Illustrated presentation of the panoramas developed in terms of each wooden church.</p> "> Figure 8
<p>Viewing of the three-dimensional models available on the website; (<b>a</b>)—main page; (<b>b</b>)—the presentation and interaction area, with exterior three-dimensional models and the information related to the description of the monument and the exact location; (<b>c</b>)—the dynamic interaction area with inside panoramas; and (<b>d</b>)—the presentation area and interaction with the three-dimensional models of the monuments’ interior.</p> "> Figure 9
<p>Interactive viewing of the panoramas inside the monuments by means of pop-up buttons, supplied with the function of guiding the visitor to the site through the individual rooms; (<b>a</b>)—panorama of the narthex of the wooden church from Campus I of the University of Oradea; (<b>b</b>)—panorama of the nave of the same monument; and (<b>c</b>)—panorama of the altar of the same monument.</p> "> Figure 10
<p>The website interface accessible from desktop computers, smartphones, and tablets.</p> ">
Abstract
:1. Introduction
2. Study Objects
3. Materials and Methods
- The data acquisition and pre-processing stage was characterised by intensive fieldwork, directed at acquiring the necessary photographic data. Simultaneously, the data gleaned were verified and pre-processed so as to help ensure that it adequately met the stated research objectives.
- Content creation formed the laboratory stage, which entailed the actual making of the 3D and panoramic models for online publication.
- Creating and populating the promotion website consisted of the final stage of the project, which ensured the online accessibility, in an interactive way, of all the models that had been created in the previous stages.
3.1. Data Acquisition and Pre-Processing
3.2. Content Creation
3.3. Creating and Populating the Promotional Website
4. Results
4.1. The Results Obtained in Terms of Creating 3D Models
4.2. The Results Obtained in Terms of Creating Panoramic Images
4.3. The Virtual Tours
5. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bittarello, M.B. Another time, another space: Virtual worlds, myths and imagination. J. Virtual Worlds Res. 2008, 1, 1–18. [Google Scholar] [CrossRef]
- Mura, P.; Tavakoli, R.; Sharif, S.P. ‘Authentic but not too much’: Exploring perceptions of authenticity of virtual tourism. Inf. Technol. Tour. 2017, 17, 145–159. [Google Scholar] [CrossRef]
- Williams, P.; Hobson, J.P. Virtual reality and tourism: Fact or fantasy? Tour. Manag. 1995, 16, 423–427. [Google Scholar] [CrossRef]
- Desai, P.R.; Desai, P.N.; Ajmera, K.D.; Mehta, K. A review paper on Oculus Rift—A virtual reality headset. Int. J. Eng. Trends Technol. 2014, 13, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, R.C.M.; Zaman, H.B.; Ahmad, A. Evaluation of user acceptance of mixed reality technology. Australas. J. Educ. Technol. 2011, 27, 1369–1387. [Google Scholar]
- Loureiro, S.M.C.; Guerreiro, J.; Ali, F. 20 years of research on virtual reality and augmented reality in tourism context: A text-mining approach. Tour. Manag. 2020, 77, 104028. [Google Scholar] [CrossRef]
- Bruno, F.; Bruno, S.; De Sensi, G.; Luchi, M.L.; Mancuso, S.; Muzzupappa, M. From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. J. Cult. Herit. 2010, 11, 42–49. [Google Scholar] [CrossRef]
- Mortara, M.; Catalano, C.E.; Bellotti, F.; Fiucci, G.; Houry-Panchetti, M.; Petridis, P. Learning cultural heritage by serious games. J. Cult. Herit. 2014, 15, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Guttentag, D.A. Virtual reality: Applications and implications for tourism. Tour. Manag. 2010, 31, 637–651. [Google Scholar] [CrossRef]
- Gutierrez, M.; Vexo, F.; Thalmann, D. Stepping into Virtual Reality; Springer Science & Business Media: London, UK, 2008. [Google Scholar]
- Huang, Y.C.; Backman, S.J.; Backman, K.F.; Moore, D. Exploring user acceptance of 3D virtual worlds in travel and tourism marketing. Tour. Manag. 2013, 36, 490–501. [Google Scholar] [CrossRef]
- Huang, Y.C.; Backman, K.F.; Backman, S.J.; Chang, L.L. Exploring the implications of virtual reality technology in tourism marketing: An integrated research framework. Int. J. Tour. Res. 2016, 18, 116–128. [Google Scholar] [CrossRef]
- Jung, K.; Nguyen, V.T.; Piscarac, D.; Yoo, S.-C. Meet the virtual Jeju Dol Harubang—The mixed VR/AR application for cultural immersion in Korea’s main heritage. ISPRS Int. J. Geo Inf. 2020, 9, 367. [Google Scholar] [CrossRef]
- Martins, J.; Gonçalves, R.; Branco, F.; Barbosa, L.; Melo, M.; Bessa, M. A multisensory virtual experience model for thematic tourism: A port wine tourism application proposal. J. Destin. Mark. Manag. 2017, 6, 103–109. [Google Scholar] [CrossRef]
- Xiao, W.; Mills, J.; Guidi, G.; Rodríguez-Gonzálvez, P.; Gonizzi Barsanti, S.; González-Aguilera, D. Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J. Photogramm. Remote Sens. 2018, 142, 389–406. [Google Scholar] [CrossRef]
- UNEP; UNWTO. Making Tourism More Sustainable: A Guide for Policy Makers; United Nations Environment Programme: Nairobi, Kenya, 2005. [Google Scholar]
- Beck, J.; Rainoldi, M.; Egger, R. Virtual reality in tourism: A state-of-the-art review. Tour. Rev. 2019, 74, 586–612. [Google Scholar] [CrossRef]
- Dewailly, J.M. Sustainable tourist space: From reality to virtual reality? Tour. Geogr. Int. J. Tour. Place Space Environ. 1999, 1, 41–55. [Google Scholar] [CrossRef]
- Styliani, S.; Fotis, L.; Kostas, K.; Petros, P. Virtual museums, a survey and some issues for consideration. J. Cult. Herit. 2009, 10, 520–528. [Google Scholar] [CrossRef]
- Carrozzino, M.; Bergamasco, M. Beyond virtual museums: Experiencing immersive virtual reality in real museums. J. Cult. Herit. 2010, 11, 452–458. [Google Scholar] [CrossRef]
- Napolitano, R.K.; Scherer, G.; Glisic, B. Virtual tours and informational modeling for conservation of cultural heritage sites. J. Cult. Herit. 2018, 29, 123–129. [Google Scholar] [CrossRef]
- Büyüksalih, G.; Kan, T.; Özkan, G.E.; Meriç, M.; Isın, L.; Kersten, T.P. Preserving the knowledge of the past through virtual visits: From 3D laser scanning to virtual reality visualisation at the Istanbul Çatalca İnceğiz Caves. J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 133–146. [Google Scholar] [CrossRef]
- Pasquaré Mariotto, F.; Bonali, F.L. Virtual geosites as innovative tools for geoheritage popularization: A case study from Eastern Iceland. Geosci. J. 2021, 11, 149. [Google Scholar] [CrossRef]
- Maiellaro, N.; Varasano, A.; Capotorto, S. Digital data, virtual tours, and 3D models integration using an open-source platform. In VR Technologies in Cultural Heritage; Duguleană, M., Carrozzino, M., Gams, M., Tanea, I., Eds.; Springer International Publishing: London, UK, 2019; pp. 148–164. [Google Scholar]
- Keil, J.; Edler, D.; Schmitt, T.; Dickmann, F. Creating immersive virtual environments based on open geospatial data and game engines. KN J. Cartogr. Geogr. Inf. 2021, 71, 53–65. [Google Scholar] [CrossRef]
- Hruby, F.; Sánchez, L.F.Á.; Ressl, R.; Escobar-Briones, E.G. An empirical study on spatial presence in immersive geo-environments. PFG J. Photogramm. Remote. Sens. Geoinf. Sci. 2020, 88, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Smaczyński, M.; Horbiński, T. Creating a 3D model of the existing historical topographic object based on low-level aerial imagery. KN J. Cartogr. Geogr. Inf. 2021, 71, 33–43. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Scopigno, R.; Callieri, M.; Cignoni, P.; Corsini, M.; Dellepiane, M.; Ponchio, F.; Ranzuglia, G. 3D models for cultural heritage: Beyond plain visualization. Computer 2011, 44, 48–55. [Google Scholar] [CrossRef]
- Poux, F.; Valembois, Q.; Mattes, C.; Kobbelt, L.; Billen, R. Initial user-centered design of a virtual reality heritage system: Applications for digital tourism. Remote Sens. 2020, 12, 2583. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; El-Khalili, M.; Almasri, E.; Bala’awi, F.; Al-Massarweh, A. Heritage documentation using laser scanner and photogrammetry. The case study of Qasr Al-Abidit, Jordan. Digit. Appl. Archaeol. Cult. Herit. 2020, 16, e00133. [Google Scholar] [CrossRef]
- Herman, G.V.; Caciora, T.; Ilieș, D.C.; Ilieș, A.; Deac, A.; Sturza, A.; Sonko, S.M.; Suba, N.S.; Nistor, S. 3D Modeling of the cultural heritage: Between opportunity and necessity. J. Appl. Eng. Sci. 2020, 10, 27–30. [Google Scholar] [CrossRef]
- Barsanti, S.G.; Gonizzi Barsanti, S.; Remondino, F.; Jiménez Fenández-Palacios, B.; Visintini, D. Critical factors and guidelines for 3D surveying and modelling in cultural heritage. Int. J. Herit. Digit. Era 2014, 3, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Agosto, E.; Ardissone, P.; Bornaz, L.; Dago, F. 3D Documentation of cultural heritage: Design and exploitation of 3D metric surveys. In Applying Innovative Technologies in Heritage Science; IGI Global: Hershey, PA, USA, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Ju, M.-H.; Kang, H.-B. Stitching images with arbitrary lens distortions. Int. J. Adv. Rob. Syst. 2014, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Truijens, M.; Hou, L.; Wang, Y.; Zhou, Y. Integrating augmented reality with building information modeling: Onsite construction process controlling for liquefied natural gas industry. Autom. Constr. 2014, 40, 96–105. [Google Scholar] [CrossRef]
- Jin, X.; Kim, J. Artwork identification for 360-degree panoramic images using polyhedron-based rectilinear projection and keypoint shapes. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 2017, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Castagnetti, C.; Giannini, M.; Rivola, R. Image-based virtual tours and 3d modeling of past and current ages for the enhancement of archaeological parks: The VisualVersilia 3D project. In Proceedings of the 1st International Conference on Geomatics and Restoration: Conservation of Cultural Heritage in the Digital Era, Florence, Italy, 22–24 May 2017; Volume 47, pp. 639–645. [Google Scholar]
- Ilieș, D.C.; Caciora, T.; Herman, G.V.; Ilieș, A.; Ropa, M.; Baias, Ș. Geohazards affecting cultural heritage monuments. A complex case study from Romania. GeoJ. Tour. Geosites 2020, 31, 1103–1112. [Google Scholar] [CrossRef]
- Loaiza Carvajal, D.A.; Morita, M.M.; Bilmes, G.M. Virtual museums. Captured reality and 3D modeling. J. Cult. Herit. 2020, 45, 234–239. [Google Scholar] [CrossRef]
- Ilieș, A.; Wendt, J.A.; Ilieș, D.C.; Herman, G.V.; Ilieș, M.; Deac, A.L. The patrimony of wooden churches, built between 1531 and 2015, in the Land of Maramureș, Romania. J. Maps 2016, 12 (Suppl. 1), 597–602. [Google Scholar] [CrossRef] [Green Version]
- Baias, Ș.; Gozner, M.; Herman, G.V.; Măduța, F. Typology of wooden churches in the drainage basins of Mureș and Arieș, Alba County. Ann. Univ. Oradea Geogr. Ser. 2015, 25, 221–233. [Google Scholar]
- Ilies, D.C.; Onet, A.; Marcu, F.; Gaceu, O.; Timar, A.; Baias, Ș.; Ilies, A.; Herman, G.V.; Costea, M.; Țepelea, M.; et al. Investigations regarding the air quality in the historic wooden church in Oradea city, Romania. Environ. Eng. Manag. J. 2018, 17, 2731–2739. [Google Scholar] [CrossRef]
- Baias, Ș. Identificarea, Evaluarea și Valorificarea Patrimoniului Cultural de Lemn Din Județul Bihor; Identification, evaluation and capitalization of the wooden cultural heritage in Bihor County; Universității din Oradea: Oradea, Romania, 2016. [Google Scholar]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 2020, 48, 140–159. [Google Scholar] [CrossRef]
- Liang, H.; Li, W.; Lai, S.; Zhu, L.; Jiang, W.; Zhang, Q. The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital photogrammetry for the documentation of Chinese classical gardens—A case study of Huanxiu Shanzhuang, Suzhou, China. J. Cult. Herit. 2018, 33, 222–230. [Google Scholar] [CrossRef]
- Menna, F.; Nocerino, E.; Remondino, F.; Dellepiane, M.; Callieri, M.; Scopigno, R. 3D digitization of an heritage masterpiece—A critical analysis on quality assessment. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress XLI-B5, Prague, Czech Republic, 12–19 July 2016; Halounova, L., Šafář, V., Remondino, F., Hodač, J., Pavelka, K., Shortis, M., Rinaudo, F., Scaioni, M., Boehm, J., Rieke-Zapp, D., Eds.; pp. 675–683. [Google Scholar]
- Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Sestras, P.; Roșca, S.; Bilașco, Ș.; Naș, S.; Buru, S.M.; Kovacs, L.; Spalević, V.; Sestras, A.F. Feasibility assessments using unmanned aerial vehicle technology in heritage buildings: Rehabilitation-restoration, spatial analysis and tourism potential analysis. Sensors 2020, 20, 2054. [Google Scholar] [CrossRef] [Green Version]
- Barazzetti, L.; Binda, L.; Scaioni, M.; Taranto, P. Photogrammetric survey of complex geometries with low-cost software: Application to the ‘G1′ temple in Myson, Vietnam. J. Cult. Herit. 2011, 12, 253–262. [Google Scholar] [CrossRef]
- Lin, J.; Wang, R.; Li, L.; Xiao, Z. A Workflow of SfM-Based Digital Outcrop Reconstruction Using Agisoft PhotoScan. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing, Xiamen, China, 4–7 July 2019; pp. 711–715. [Google Scholar]
- D’Annibale, E.; Tassetti, A.N.; Malinverni, E.S. From panoramic photos to a low-cost photogrammetric workflow for cultural heritage 3D documentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 5, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Gottardi, C.; Guerra, F. Spherical images for cultural heritage: Survey and documentation with the Nikon KM360. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, A.P.; Kersten, T.P. The Imperial Cathedral in Königslutter (Germany) as an immersive experience in Virtual Reality with integrated 360° panoramic photography. Appl. Sci. 2020, 10, 1517. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Ni, L.; Xu, L.; Li, H.; Liu, X. Multi-face real-time tracking based on dual panoramic camera for full-parallax light-field display. Opt. Commun. 2019, 442, 19–26. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Hafeez, J.; Lee, J.; Kwon, S.; Ha, S.; Hur, G.; Lee, S. Evaluating feature extraction methods with synthetic noise patterns for image-based modelling of texture-less objects. Remote Sens. 2020, 12, 3886. [Google Scholar] [CrossRef]
- Munzner, T. Visualization Analysis and Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wilson, K.; Snavely, N. Network principles for sfm: Disambiguating repeated structures with local context. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 513–520. [Google Scholar]
- Alsadik, B.S.A. Guided Close Range Photogrammetry for 3D Modelling of Cultural Heritage Sites. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 21 November 2014. [Google Scholar] [CrossRef] [Green Version]
- Triggs, B.; Mclauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A modern Synthesis. In Proceedings of the International Workshop on Vision Algorithms, Corfu, Greece, 20–25 September 2000; pp. 298–372. Available online: https://link.springer.com/chapter/10.1007%2F3-540-44480-7_21 (accessed on 22 April 2021).
- Ahmadabadian, A.H.; Robson, S.; Boehm, J.; Shortis, M. Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction. Videometrics Range Imaging Appl. Autom. Vis. Insp. 2013. [Google Scholar] [CrossRef] [Green Version]
- Kazhdan, M.; Funkhouser, T.; Rusinkiewicz, S. Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proceedings of the Eurographics Symposium on Geometry Processing, Aachen, Germany, 23–25 June 2003; European Association for Computer Graphics: Aachen, Germany, 2003; p. 9. [Google Scholar]
- Remondino, F.; El-Hakim, S. Image-based 3D modelling: A review. Photogramm. Rec. 2006, 21, 169–291. [Google Scholar] [CrossRef]
- Mah, O.B.P.; Yan, Y.; Tan, J.S.Y.; Tan, Y.-X.; Tay, G.Q.Y.; Chiam, D.J.; Wang, Y.-C.; Dean, K.; Feng, C.-C. Generating a virtual tour for the preservation of the (in)tangible cultural heritage of Tampines Chinese Temple in Singapore. J. Cult. Herit. 2019, 39, 202–211. [Google Scholar] [CrossRef]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Chiriac, A. Pictura Bisericilor de Lemn Românești din Bihor în Secolele al XVIII-lea si al XIX-lea [Painting of the Romanian Wooden Churches from Bihor in the 18th and 19th Centuries]; Muzeului Tării Crișurilor: Oradea, Romania, 1999. [Google Scholar]
- Choi, D.H.; Dailey-Hebert, A.; Estes, J.S. Emerging tools and applications of virtual reality in education. In Information Science Reference; Choi, D.H., Dailey-Hebert, A., Estes, J.S., Eds.; IGI Global: Hershey, PA, USA, 2016. [Google Scholar]
- Jung, T.; tom Dieck, M.C.; Moorhouse, N.; tom Dieck, D. Tourists’ experience of Virtual Reality applications. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017; pp. 208–210. [Google Scholar]
- Kang, Y.; Yang, K.C. Employing digital reality technologies in art exhibitions and museums: A global survey of best practices and implications. In Virtual and Augmented Reality in Education, Art, and Museums; Guazzaroni, G., Pillai, A., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 139–161. [Google Scholar]
- Bec, A.; Moyle, B.; Schaffer, V.; Timms, K. Virtual reality and mixed reality for second chance tourism. Tour. Manag. 2021, 83, 104256. [Google Scholar] [CrossRef]
- Chakrabarty, P.; Sadhukhan, S.K. Destination Image for Pilgrimage and Tourism: A Study in Mount Kailash Region of Tibet. Folia Geogr. 2020, 62, 71–86. [Google Scholar]
- Matlovičová, K.; Tirpáková, E.; Mocák, P. City brand image: Semiotic perspective a case study of Prague. Folia Geogr. 2019, 61, 120–142. [Google Scholar]
- Matlovičová, K.; Kolesárová, J. Destination image and possibilities of its formation: A case study of the image of Thailand as a tourist destination perceived by Slovaks. Cent. Eur. Reg. Policy Hum. Geogr. 2012, 2, 5–20. [Google Scholar]
- Carmigniani, J.; Furht, B. Augmented reality: An overview. In Handbook of Augmented Reality; Fuhrt, B., Ed.; Springer: New York, NY, USA, 2018; pp. 3–46. [Google Scholar]
- Wall, G.; Mathieson, A. Tourism: Change, Impacts and Opportunities; Pearson Prentice Hall: Toronto, ON, Canada, 2006. [Google Scholar]
- Yu, X.; Kim, N.; Chen, C.-C.; Schwartz, Z. Are you a tourist? Tourism definition from the tourist perspective. Tour. Anal. 2012, 17, 445–457. [Google Scholar] [CrossRef]
- Deggim, S.; Kersten, T.P.; Lindstaedt, M.; Hinrichsen, N. The return of the siegesburg—3D reconstruction of a disappeared and forgotten monument. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 209. [Google Scholar] [CrossRef] [Green Version]
- Cheong, R. The virtual threat to travel and tourism. Tour. Manag. 1995, 16, 417–422. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caciora, T.; Herman, G.V.; Ilieș, A.; Baias, Ș.; Ilieș, D.C.; Josan, I.; Hodor, N. The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania. Remote Sens. 2021, 13, 1758. https://doi.org/10.3390/rs13091758
Caciora T, Herman GV, Ilieș A, Baias Ș, Ilieș DC, Josan I, Hodor N. The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania. Remote Sensing. 2021; 13(9):1758. https://doi.org/10.3390/rs13091758
Chicago/Turabian StyleCaciora, Tudor, Grigore Vasile Herman, Alexandru Ilieș, Ștefan Baias, Dorina Camelia Ilieș, Ioana Josan, and Nicolaie Hodor. 2021. "The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania" Remote Sensing 13, no. 9: 1758. https://doi.org/10.3390/rs13091758
APA StyleCaciora, T., Herman, G. V., Ilieș, A., Baias, Ș., Ilieș, D. C., Josan, I., & Hodor, N. (2021). The Use of Virtual Reality to Promote Sustainable Tourism: A Case Study of Wooden Churches Historical Monuments from Romania. Remote Sensing, 13(9), 1758. https://doi.org/10.3390/rs13091758