Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data
"> Figure 1
<p>Study area in Salbertrand, North-West Italy. The symbols show the species mapped in the field. The species codes are explained in Table 4.</p> "> Figure 2
<p>Detail of the orthomosaics of the RGB sensors resulting from the photogrammetric process. (<b>a</b>) Epoch I, March; (<b>b</b>) Epoch II, June; (<b>c</b>) Epoch III, July.</p> "> Figure 3
<p>Examples of the segmentation results. Different areas and different backgrounds: epoch II (<b>bottom</b>) and epoch III (<b>above</b>).</p> "> Figure 4
<p>Visual representation of the classification result.</p> "> Figure 5
<p>Detail of <span class="html-italic">Pinus sylvestris</span> (Ps) and <span class="html-italic">Betula pendula</span> (Bp) in epoch I (March). The other species (Bd and Pc) are still without leaves.</p> "> Figure 6
<p>F1-score variability in the analyzed scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Data Collection
2.3. UAV Data Processing
2.4. Identification and Mapping of Tree and Shrub Species
2.5. Species Classification
- (i)
- Segmentation;
- (ii)
- Feature extraction and data preparation;
- (iii)
- Training and test datasets creation;
- (iv)
- Classification;
- (v)
- Feature selection;
- (vi)
- Validation.
2.5.1. Segmentation
2.5.2. Feature Extraction
2.5.3. Data Preparation and Classification Algorithm
Classification
Feature Selection
2.5.4. Validation
2.5.5. Multi-Temporal Assessment
3. Results and Discussion
3.1. UAV Data Processing
3.2. Species Classification
3.2.1. Segmentation
3.2.2. Classification Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naiman, R.J.; Décamps, H. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef] [Green Version]
- Hughes, F.M.R.; Rood, S.B. Allocation of River Flows for Restoration of Floodplain Forest Ecosystems: A Review of Approaches and Their Applicability in Europe. Environ. Manag. 2003, 32, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Naiman, R.J.; Décamps, H.; McClain, M.E. Riparia—Ecology, Conservation and Management of Streamside Communities. Aquat. Conserv. Mar. Freshw. Ecosyst. 2007, 17, 657. [Google Scholar] [CrossRef]
- Angelini, P.; Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Italy; ISPRA. Manuali per il Monitoraggio di Specie e Habitat di Interesse Comunitario (Direttiva 92/43/CEE) in Italia: Habitat; ISPRA: Roma, Italy, 2016; ISBN 978-88-448-0789-4. [Google Scholar]
- Bazzaz, F.A. Plant Species Diversity in Old-Field Successional Ecosystems in Southern Illinois. Ecology 1975, 56, 485–488. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Burrascano, S.; Casavecchia, S.; Copiz, R.; El Vico, E.; Galdenzi, D.; Gigante, D.; Lasen, C.; Spampinato, G.; et al. Manuale Italiano di Interpretazione Degli Habitat (Direttiva 92/43/CEE) 2009; Direzione per la Protezione della Natura: Rome, Italy, 2009. [Google Scholar]
- Frick, A.; Haest, B.; Buck, O.; Vanden Borre, J.; Foerster, M.; Pernkopf, L.; Lang, S. Fostering Sustainability in European Nature Conservation NATURA 2000 Habitat Monitoring Based on Earth Observation Services. In Proceedings of the 1st World Sustainability Forum, Web Conference, 7 November 2011; p. 724. [Google Scholar]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating Remote Sensing in Natura 2000 Habitat Monitoring: Prospects on the Way Forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; García Millán, V.E.; Strasser, T.; Vanden Borre, J.; Toon, S.; Michael, F. Remote Sensing for Mapping Natural Habitats and Their Conservation Status—New Opportunities and Challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Schmidt, J.; Fassnacht, F.E.; Neff, C.; Lausch, A.; Kleinschmit, B.; Förster, M.; Schmidtlein, S. Adapting a Natura 2000 Field Guideline for a Remote Sensing-Based Assessment of Heathland Conservation Status. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 61–71. [Google Scholar] [CrossRef]
- Prošek, J.; Šímová, P. UAV for Mapping Shrubland Vegetation: Does Fusion of Spectral and Vertical Information Derived from a Single Sensor Increase the Classification Accuracy? Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 151–162. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; Serrano, J.M.P.R.; Agüera-Vega, F.; Martínez-Carricondo, P. A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest. Remote Sens. 2019, 11, 2579. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of Studies on Tree Species Classification from Remotely Sensed Data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N. Mapping Natura 2000 Habitat Conservation Status in a Pannonic Salt Steppe with Airborne Laser Scanning. Remote Sens. 2015, 7, 2991–3019. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Shen, X.; Cao, L.; Coops, N.C.; Goodbody, T.R.H.; Zhong, T.; Zhao, W.; Sun, Q.; Ba, S.; Zhang, Z.; et al. Tree Species Classification Using UAS-Based Digital Aerial Photogrammetry Point Clouds and Multispectral Imageries in Subtropical Natural Forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102173. [Google Scholar] [CrossRef]
- Takahashi Miyoshi, G.; Imai, N.N.; Garcia Tommaselli, A.M.; Antunes de Moraes, M.V.; Honkavaara, E. Evaluation of Hyperspectral Multitemporal Information to Improve Tree Species Identification in the Highly Diverse Atlantic Forest. Remote Sens. 2020, 12, 244. [Google Scholar] [CrossRef] [Green Version]
- Sothe, C.; Dalponte, M.; de Almeida, C.M.; Schimalski, M.B.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; Tommaselli, A.M.G. Tree Species Classification in a Highly Diverse Subtropical Forest Integrating UAV-Based Photogrammetric Point Cloud and Hyperspectral Data. Remote Sens. 2019, 11, 1338. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Improving LiDAR-Based Tree Species Mapping in Central European Mixed Forests Using Multi-Temporal Digital Aerial Colour-Infrared Photographs. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101970. [Google Scholar] [CrossRef]
- Franklin, S.E.; Ahmed, O.S. Deciduous Tree Species Classification Using Object-Based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data. Int. J. Remote Sens. 2018, 39, 5236–5245. [Google Scholar] [CrossRef]
- Modzelewska, A.; Fassnacht, F.E.; Stereńczak, K. Tree Species Identification within an Extensive Forest Area with Diverse Management Regimes Using Airborne Hyperspectral Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101960. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Ferreira, M.P.; de Almeida, D.R.A.; Papa, D.d.A.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual Tree Detection and Species Classification of Amazonian Palms Using UAV Images and Deep Learning. For. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Cerasoli, S.; Araújo, J.; Campos, J.; Di Fazio, S.; Modica, G. Object-Based Land Cover Classification of Cork Oak Woodlands Using UAV Imagery and Orfeo ToolBox. Remote Sens. 2019, 11, 1238. [Google Scholar] [CrossRef] [Green Version]
- Michez, A.; Piégay, H.; Lisein, J.; Claessens, H.; Lejeune, P. Classification of Riparian Forest Species and Health Condition Using Multi-Temporal and Hyperspatial Imagery from Unmanned Aerial System. Environ. Monit. Assess. 2016, 188, 146. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Hepinstall-Cymerman, J.; Coe, S.; Alberti, M. Using Urban Landscape Trajectories to Develop a Multi-Temporal Land Cover Database to Support Ecological Modeling. Remote Sens. 2009, 1, 1353–1379. [Google Scholar] [CrossRef] [Green Version]
- Long, J.A.; Lawrence, R.L.; Greenwood, M.C.; Marshall, L.; Miller, P.R. Object-Oriented Crop Classification Using Multitemporal ETM+ SLC-off Imagery and Random Forest. GIScience Remote Sens. 2013, 50, 418–436. [Google Scholar] [CrossRef]
- Gärtner, P.; Förster, M.; Kleinschmit, B. The Benefit of Synthetically Generated RapidEye and Landsat 8 Data Fusion Time Series for Riparian Forest Disturbance Monitoring. Remote Sens. Environ. 2016, 177, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, D. Accurate Mapping of Forest Types Using Dense Seasonal Landsat Time-Series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Mondino, G.P. Boschi Planiziali a Pinus Sylvestris e Alnus Incana delle Alluvioni del Torrente Bardonecchia; Regione Piemonte: Alessandria, Italy, 1963. [Google Scholar]
- Camerano, P.; Gottero, F.; Terzuolo, P.G.; Varese, P. Tipi Forestali del Piemonte; IPLA S.p.A., Regione Piemonte, Blu Edizioni: Torino, Italy, 2008. [Google Scholar]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 12 February 2021).
- Chiabrando, F.; Lingua, A.; Piras, M. Direct Photogrammetry Using UAV: Tests And First Results. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Rostock, Germany, 16 August 2013; Volume XL-1-W2, pp. 81–86. [Google Scholar]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Meneguzzo, D.M.; Liknes, G.C.; Nelson, M.D. Mapping Trees Outside Forests Using High-Resolution Aerial Imagery: A Comparison of Pixel- and Object-Based Classification Approaches. Environ. Monit. Assess. 2013, 185, 6261–6275. [Google Scholar] [CrossRef] [PubMed]
- Rastner, P.; Bolch, T.; Notarnicola, C.; Paul, F. A Comparison of Pixel- and Object-Based Glacier Classification With Optical Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 853–862. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- ECognition|Trimble Geospatial. Available online: https://geospatial.trimble.com/products-and-solutions/ecognition (accessed on 11 February 2021).
- Persello, C.; Bruzzone, L. A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1232–1244. [Google Scholar] [CrossRef]
- Yurtseven, H.; Akgul, M.; Coban, S.; Gulci, S. Determination and Accuracy Analysis of Individual Tree Crown Parameters Using UAV Based Imagery and OBIA Techniques. Measurement 2019, 145, 651–664. [Google Scholar] [CrossRef]
- Belcore, E.; Wawrzaszek, A.; Wozniak, E.; Grasso, N.; Piras, M. Individual Tree Detection from UAV Imagery Using Hölder Exponent. Remote Sens. 2020, 12, 2407. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Thyagharajan, K.K.; Vignesh, T. Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review. Arch. Comput. Methods Eng. 2019, 26, 275–301. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-Cover Mapping Using Random Forest Classification and Incorporating NDVI Time-Series and Texture: A Case Study of Central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Lewiński, S.; Aleksandrowicz, S.; Banaszkiewicz, M. Testing Texture of VHR Panchromatic Data as a Feature of Land Cover Classification. Acta Geophys. 2015, 63, 547–567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Drzewiecki, W.; Wawrzaszek, A.; Aleksandrowicz, S.; Krupiński, M.; Bernat, K. Comparison of Selected Textural Features as Global Content-Based Descriptors of VHR Satellite Image. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 4364–4366. [Google Scholar]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference (SCIPY 2010), Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chawla, N.V. Data Mining for Imbalanced Datasets: An Overview. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2010; pp. 875–886. ISBN 978-0-387-09823-4. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.-Y.; Mao, B.-H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3644, pp. 878–887. ISBN 978-3-540-28226-6. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Random Forests. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Hastie, T., Tibshirani, R., Friedman, J., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; pp. 587–604. ISBN 978-0-387-84858-7. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011; ISBN 978-1-60918-176-5. [Google Scholar]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. IJCAI 1995, 14, 1137–1145. [Google Scholar]
- Breiman, L.; Spector, P. Submodel Selection and Evaluation in Regression. The X-Random Case. Int. Stat. Rev. Rev. Int. Stat. 1992, 60, 291. [Google Scholar] [CrossRef]
- Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Vieira, G.d.S.; Rocha, B.M.; Soares, F.; Lima, J.C.; Pedrini, H.; Costa, R.; Ferreira, J. Extending the Aerial Image Analysis from the Detection of Tree Crowns. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 1681–1685. [Google Scholar]
- Pearse, G.D.; Dash, J.P.; Persson, H.J.; Watt, M.S. Comparison of High-Density LiDAR and Satellite Photogrammetry for Forest Inventory. ISPRS J. Photogramm. Remote Sens. 2018, 142, 257–267. [Google Scholar] [CrossRef]
- Vastaranta, M.; Kankare, V.; Holopainen, M.; Yu, X.; Hyyppä, J.; Hyyppä, H. Combination of Individual Tree Detection and Area-Based Approach in Imputation of Forest Variables Using Airborne Laser Data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 73–79. [Google Scholar] [CrossRef]
Study | Spectral Sensor | Number of Classes | Number of Bands | Overall Accuracy | Forest Type | Classification Approach | Classification Algorithm | Multi-Temporal |
---|---|---|---|---|---|---|---|---|
Modzelewska et al. (2020) [20] | Hyper | 7 (2 conifers, 5 broadleaves) | 451 | 70 | Temperate | Pixel-based | SVM | No |
Nevalainen et al. (2017) [25] | Hyper | 4 (3 conifers, 1 broadleaf) | 33 | 95 | Boreal | Individual tree | RF and k-NN | No |
Sothe et al. (2019) [17] | Hyper | 12 (12 broadleaves) | 25 | 72 | Subtropical | Pixel-based | SVM | No |
Takahashi Miyoshi et al. (2020) [16] | Hyper | 8 (8 broadleaves) | 25 | 50 | Atlantic | Pixel-based | RF | Yes, on year bases (3 epochs) |
Xu et al. (2020) [15] | Multi (+LiDAR) | 8 (3 conifers, 5 broadleaves) | 8 | 66 | Subtropical | Individual tree | RF | No |
Shi et al. (2020) [18] | Multi (+LiDAR) | 5 (2 conifers, 3 broadleaves) | 3 | 67 77 (with LiDAR) | Temperate | Individual tree | RF | Yes, on year bases (3 epochs) |
Ferreira et al. (2020) [22] | Multi | 4 (palms) | 3 | 83 (averaged accuracy) | Amazon palms | Individual tree | CNN | No |
Schiefer et al. (2020) [21] | Multi | 14(5 conifers, 9 broadleaves, 2 other) | 3 | 89 | Temperate | Pixel-based | CNN | No |
Francklin et al. (2017) [19] | Multi | 5 (5 broadleaves) | 6 | 78 | Temperate | Object oriented | RF | No |
Michez et al. (2016) [24] | Multi (+LiDAR) | 5 (4 broadleaf, 1 other) | 6 | 79 | Temperate riparian | Object oriented | RF | Yes, non-phenological-based (25 epochs) |
UAV | Sensors | Focal Length | Image Size | MP | Central Band and Bandwidth |
---|---|---|---|---|---|
DJI Phantom 4 multi-spectral | Multispectral | 5.74 mm | 1600 × 1300 | 2.08 | R: 650 nm ± 16 nm G: 560 nm ± 16 nm B: 450 nm ± 16 nm REdge: 730 nm ± 16 nm N: 840 nm ± 26 nm |
RGB | 5.74 mm | 1600 × 1300 | 2.08 | n.a. | |
DJI Phantom 4 pro | RGB | 8.8 mm | 4000 × 3000 | 12.4 | n.a. |
Epoch I | Epoch II | Epoch III | |
---|---|---|---|
Number of flights | 2 | 1 | 2 |
Date | 17 March 2020 | 05 June 2020 | 27 July 2020 |
Average height (m) | 98 | 93 | 88 |
Average GSD (m) | 2.5 | 4.7 | 4.5 |
Area (km2) | 1.2 | 0.59 | 0.78 |
Number of images | 1100 | 1332 | 1066 |
Camera orientation | Nadiral, oblique | Nadiral, oblique | Nadiral, oblique |
Species | Common Name | Code | Number of Samples |
---|---|---|---|
Alnus incana | Grey Alder | Ai | 84 |
Salix purpurea | Red Willow | Sp | 52 |
Salix alba | White Willow | Sa | 40 |
Pinus sylvestris | Scots Pine | Ps | 22 |
Betula pendula | Silver Birch | Bp | 15 |
Fraxinus excelsior | European Ash | Fe | 9 |
Elaeagnus rhamnoides | Sea Buckthorn | Er | 8 |
Populus deltoides | Eastern Cottonwood | Pd | 8 |
Salix eleagnos | Bitter Willow | Se | 6 |
Populus canadensis | Canadian Poplar | Pc | 5 |
Populus alba | White Poplar | Ppa | 4 |
Larix decidua | European Larch | Ld | 3 |
Populus nigra | Black Poplar | Pn | 3 |
Buddleja davidii | Butterfly Bush | Bd | 3 |
Salix triandra | Almond Willow | St | 2 |
Prunus avium | Sweet Cherry | Pa | 2 |
Populus tremula | European Aspen | Pt | 1 |
Acer opalus | Italian Maple | Ao | 1 |
Features | Formula/Notes | I | II | III | |
---|---|---|---|---|---|
Spectral indices | Enhanced Vegetation Index (EVI) | X | X | ||
Hue (RGB) | X | ||||
Hue multi-spectral | X | X | |||
Intensity (RGB) | X | ||||
Intensity multi-spectral | X | X | |||
Saturation (RGB) | X | ||||
Saturation multi-spectral | X | ||||
Normalized Difference Vegetation Index (NDVI) | X | X | |||
Normalized Difference Water Index NIR, (NDWI) | X | X | |||
Normalized Difference Water Index RedEdge (NDWI) | X | X | |||
Brightness | / | X | |||
Histogram-based | Mode | Mode of the DN values of the polygon’s pixels. | X | X | X |
Mean | Mean of the DN values of the polygon’s pixels. | X | X | X | |
Skew | Skewness of the DN values of the polygon’s pixels. | X | X | X | |
Stdv | Standard deviation of the DN values of the polygon’s pixels. | X | X | X | |
GLCM textural measures | Contr | Contrast; measures the local contrast of an image. | X | X | X |
Entr | Entropy. | X | X | X | |
Asm | Angular Second Moment; measures the number of repeated pairs. | X | X | X | |
Corr | Correlation; measures the correlation between pairs of pixels. | X | X | X | |
Idm | Inverse Difference Moment; measures the homogeneity. | X | X | X | |
Savg | Sum Average. | X | X | X | |
Svar | Sum Variance. | X | X | X | |
Mean | Mean. | X | X | X | |
Diss | Dissimilarity. | X | X | X | |
2nd order segmentation textural measures | Density of sub-objects | Standard deviation and mean of the density of the sub-object of a segment. | EPOCH-INDEPENDENT VARIABLE | ||
Direction of sub-objects | Standard deviation and mean of the main direction of the sub-object of a segment. | ||||
Area of sub-objects | Standard deviation and mean of the areas of the sub-object of a segment. | ||||
Asymmetry of sub-objects | Standard deviation and mean of the assymetry of the sub-object of a segment. | ||||
Mean of sub-objects | Mean of of the sub-objects internal standard deviations calculated on the DN values. | ||||
Avrg. mean diff to neighbors of sub-objects | Average difference of DN of each sub-object to the neighbouring ones. | ||||
Max. diff. | Maximum difference of DN of the sub-objects. | ||||
DEM | CHM | Crown height elevation model | EPOCH-INDEPENDENT |
Class (Species) | Common Name | Class Label | Number of Available Samples |
---|---|---|---|
Alnus incana | Grey Alder | Ai | 82 |
Salix purpurea | Red Willow | Sp | 59 |
Other species | / | Oth | 39 |
Salix alba | White Willow | Sa | 38 |
Pinus sylvestris | Scots Pine | Ps | 19 |
Betula pendula | Silver Birch | Bp | 14 |
Fraxinus excelsior | European Ash | Fe | 9 |
Scenarios | Dataset Composition | Number of Features |
---|---|---|
A | Epoch I | 56 |
B | Epoch II | 142 |
C | Epoch III | 122 |
D | Epoch I and II | 189 |
E | Epoch II and III | 255 |
F | Epoch I and III | 169 |
G | Epoch I, II and III | 302 |
H | Epoch I, II and III, no CHM | 301 |
I | Epoch I, II and III no SMOTE | 302 |
Qualitative Metric | Value |
---|---|
Producer’s accuracy | 0.81 |
Users’ accuracy | 0.61 |
F1 score | 0.70 |
Omission | 0.19 |
Commission | 0.39 |
Over-Segmentation Index * | Under-Segmentation Index * | Completeness Index * | Jaccard Index | |
---|---|---|---|---|
Average | 0.18 | 0.21 | 0.22 | 0.67 |
Min | 0.02 | 0.01 | 0.07 | 0.05 |
Max | 0.45 | 0.95 | 0.67 | 0.90 |
Median | 0.17 | 0.18 | 0.20 | 0.69 |
Metric | RMSE | Average Value of Crown Size | % | Unit of Measure |
---|---|---|---|---|
Area | 0.87 | 6.99 | 12% | m2 |
Peimeter | 2.78 | 9.86 | 28% | m |
Scenario | OA | Metric | Ai | Sp | Oth | Sa | Ps | Bp | Fe |
---|---|---|---|---|---|---|---|---|---|
A | Precision | 0.64 | 0.53 | 0.47 | 0.79 | 0.59 | 0.25 | 0.11 | |
0.58 | Recall | 0.73 | 0.53 | 0.37 | 0.77 | 0.68 | 0.14 | 0.11 | |
F1 | 0.68 | 0.53 | 0.41 | 0.78 | 0.63 | 0.18 | 0.11 | ||
B | Precision | 0.61 | 0.59 | 0.43 | 0.78 | 0.64 | 0.00 | 0.25 | |
0.59 | Recall | 0.77 | 0.51 | 0.34 | 0.79 | 0.74 | 0.00 | 0.22 | |
F1 | 0.68 | 0.55 | 0.38 | 0.78 | 0.68 | 0.00 | 0.24 | ||
C | Precision | 0.66 | 0.53 | 0.65 | 0.74 | 0.54 | 0.22 | 0.11 | |
0.61 | Recall | 0.79 | 0.39 | 0.32 | 0.85 | 0.63 | 0.14 | 0.22 | |
F1 | 0.73 | 0.46 | 0.53 | 0.81 | 0.60 | 0.17 | 0.11 | ||
D | Precision | 0.64 | 0.54 | 0.54 | 0.71 | 0.79 | 0.17 | 0.17 | |
0.61 | Recall | 0.79 | 0.53 | 0.39 | 0.77 | 0.79 | 0.21 | 0.11 | |
F1 | 0.72 | 0.51 | 0.45 | 0.74 | 0.79 | 0.10 | 0.13 | ||
E | Precision | 0.68 | 0.66 | 0.72 | 0.88 | 0.65 | 0.40 | 0.42 | |
0.69 | Recall | 0.84 | 0.59 | 0.47 | 0.97 | 0.68 | 0.14 | 0.56 | |
F1 | 0.75 | 0.63 | 0.57 | 0.93 | 0.67 | 0.21 | 0.48 | ||
F | Precision | 0.64 | 0.55 | 0.58 | 0.79 | 0.67 | 0.33 | 0.29 | |
0.63 | Recall | 0.82 | 0.49 | 0.39 | 0.87 | 0.74 | 0.14 | 0.22 | |
F1 | 0.72 | 0.52 | 0.47 | 0.83 | 0.70 | 0.20 | 0.25 | ||
G | Precision | 0.71 | 0.68 | 0.68 | 0.88 | 0.83 | 0.50 | 0.45 | |
0.71 | Recall | 0.88 | 0.61 | 0.50 | 0.95 | 0.79 | 0.21 | 0.56 | |
F1 | 0.78 | 0.64 | 0.58 | 0.91 | 0.81 | 0.30 | 0.50 | ||
H | Precision | 0.70 | 0.61 | 0.70 | 0.86 | 0.82 | 0.50 | 0.56 | |
0.70 | Recall | 0.84 | 0.59 | 0.50 | 0.95 | 0.74 | 0.29 | 0.56 | |
F1 | 0.76 | 0.60 | 0.58 | 0.90 | 0.78 | 0.36 | 0.56 | ||
I | Precision | 0.61 | 0.58 | 0.58 | 0.88 | 0.78 | 1.00 | 0.20 | |
0.65 | Recall | 0.90 | 0.49 | 0.37 | 0.92 | 0.74 | 0.00 | 0.11 | |
F1 | 0.73 | 0.53 | 0.45 | 0.90 | 0.76 | 0.00 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belcore, E.; Pittarello, M.; Lingua, A.M.; Lonati, M. Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data. Remote Sens. 2021, 13, 1756. https://doi.org/10.3390/rs13091756
Belcore E, Pittarello M, Lingua AM, Lonati M. Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data. Remote Sensing. 2021; 13(9):1756. https://doi.org/10.3390/rs13091756
Chicago/Turabian StyleBelcore, Elena, Marco Pittarello, Andrea Maria Lingua, and Michele Lonati. 2021. "Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data" Remote Sensing 13, no. 9: 1756. https://doi.org/10.3390/rs13091756
APA StyleBelcore, E., Pittarello, M., Lingua, A. M., & Lonati, M. (2021). Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data. Remote Sensing, 13(9), 1756. https://doi.org/10.3390/rs13091756