Supervised Detection of Ionospheric Scintillation in Low-Latitude Radio Occultation Measurements
<p>SNR, detrended excess phase, and intensity and phase PSDs. Blue and red curves are related to SNR, excess phase and their power spectra, respectively. MetOp measurements (<b>a</b>) MTPB.2015.079.03.41.G29, (<b>b</b>) MTPB.2015.079.01.58.G13 and (<b>c</b>) MTPB.2015.079.01.51.G19 show a monotonic power law in intensity and phase PSDs; (<b>d</b>) MTPB.2015.079.03.49.G23 depicts an apparent two-component power law in the intensity PSD, with phase PSD following a different trend at the high-frequency end; and (<b>e</b>) MTPA.2015.076.11.31.G07 and (<b>f</b>) MTPA.2015.077.03.17.G01 correspond to inconclusive cases or measurements not affected by disturbances in the SNR and detrended phase. Vertical lines show possible spectral breaks (<math display="inline"><semantics> <msub> <mi>f</mi> <mi>b</mi> </msub> </semantics></math>).</p> "> Figure 2
<p>(<b>a</b>) Solar radio flux (F10.7) during the 24th solar cycle, which correlates to sunspot number. Red dots denote the periods considered in the data set. (<b>b</b>,<b>c</b>) Kp index with geomagnetic activity defined as low (green), medium (yellow) and high (red). The time series in 2015 shows medium and high Kp index values as a consequence of the St. Patrick’s Storm. During 14–19 May 2018, days were classified as quiet (low activity) according to <math display="inline"><semantics> <mrow> <mi>K</mi> <mi>p</mi> </mrow> </semantics></math> index.</p> "> Figure 3
<p>Geomagnetic records of (<b>a</b>,<b>b</b>) SYM-H indices, (<b>c</b>,<b>d</b>) IMF <math display="inline"><semantics> <msub> <mi>B</mi> <mi>x</mi> </msub> </semantics></math>, (<b>e</b>,<b>f</b>) IMF <math display="inline"><semantics> <msub> <mi>B</mi> <mi>y</mi> </msub> </semantics></math> and (<b>g</b>,<b>h</b>) IMF <math display="inline"><semantics> <msub> <mi>B</mi> <mi>z</mi> </msub> </semantics></math> during 14–20 March 2015 and 14–19 May 2018. Unit: nano-Tesla (nT).</p> "> Figure 4
<p>Removed RO measurements. (<b>a</b>) MTPA.2018.139.20.04.G01 shows a U-shaped scintillation signature; (<b>b</b>) MTPB.2015.076.05.01.G30, (<b>c</b>) MTPA.2018.134.20.08.G01, (<b>d</b>) MTPA.2018.134.21.50.G14 and (<b>e</b>) MTPA.2015.076.06.59.G12 depict cases with quasi-regular fluctuations (S-type) and (<b>f</b>) MTPB.2015.075.15.04.G31 depicts a case with plateau region shorter than 10 s.</p> "> Figure 5
<p>Length of the evaluated occultation segments. The average plateau length is around 22 s.</p> "> Figure 6
<p>Local time distribution of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> index on MetOp-A,B occultations during the first period with high solar activity, i.e., 15 March (DOY 74) to 20 March (DOY 79) in 2015. “Low” corresponds to <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>≤</mo> <mn>0.2</mn> </mrow> </semantics></math>, “Mid” to <math display="inline"><semantics> <mrow> <mn>0.2</mn> <mo><</mo> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>≤</mo> <mn>0.5</mn> </mrow> </semantics></math> and “High” to <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>></mo> <mn>0.5</mn> </mrow> </semantics></math>. Strong scintillations were observed mostly during evenings.</p> "> Figure 7
<p>Local time distribution of <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> index on MetOp-A,B occultations during the second period with low solar activity, i.e., 14 May (DOY 134) to 19 May (DOY 139) in 2018. “Low” corresponds to <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>≤</mo> <mn>0.2</mn> </mrow> </semantics></math>, “Mid” to <math display="inline"><semantics> <mrow> <mn>0.2</mn> <mo><</mo> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>≤</mo> <mn>0.5</mn> </mrow> </semantics></math> and “High” to <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mn>4</mn> </msub> <mo>></mo> <mn>0.5</mn> </mrow> </semantics></math>. The occurrence of strong scintillations is lower than in the period evaluated in 2015.</p> "> Figure 8
<p>Local time distribution of labelled occultations between March 15th (DOY 74) and March 20th (DOY 79) in 2015. Label 1 observations correspond to the majority of the observations composing the data set in this period, likely related to the solar cycle period.</p> "> Figure 9
<p>Local time distribution of labelled occultations between 14 May (DOY 134) and 19 May (DOY 139) in 2018. Label 0 observations are the majority of the observations in this period, alternating the trend observed in March 2015.</p> "> Figure 10
<p>Daily averaged PSDs for label 1 observations. Blue curves correspond to intensity, red corresponds to the phase, and shaded regions to the 95% confidence interval. Spectral slopes estimated by least squares fit within 2.77 and 3.37, with phase slopes closely following the trend. The <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> index corresponds to the average among label 1 cases in each day.</p> "> Figure 11
<p>Daily averaged PSDs for label 0 observations. Blue curves correspond to intensity, red corresponds to phase, and shaded regions to the 95% confidence interval. Spectral slopes are in general shallower than the ones observed in the averaged intensity PSDs of label 1 measurements. Phase PSDs do not follow closely the intensity slopes at the high–frequency end. The <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> index corresponds to the average among label 0 cases in each day.</p> "> Figure 12
<p>Distribution of (<b>a</b>) maximum <math display="inline"><semantics> <msub> <mi>S</mi> <mn>4</mn> </msub> </semantics></math> index and (<b>b</b>) <math display="inline"><semantics> <msub> <mi>σ</mi> <mrow> <mi>ϕ</mi> <mspace width="0.166667em"/> <mi>avg</mi> </mrow> </msub> </semantics></math> (2015 and 2018 accumulated): Label 1 occultations are predominant in moderate and high scintillation indices; STDV distribution between (<b>c</b>) 0930–2130 LT and (<b>d</b>) 2130–0930 LT: Mean STDV values are significantly higher in label 1 observations than in label 0 in both day periods. Label 0 and 1 correspond to blue and red lines, respectively. Occultations with <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>T</mi> <mi>D</mi> <mi>V</mi> <mo>></mo> <mn>10</mn> </mrow> </semantics></math> μ rad were not considered in the figure.</p> "> Figure 13
<p>Confusion (contingency) matrix.</p> "> Figure 14
<p>Overview of preprocessing, labelling, and training and testing steps.</p> "> Figure 15
<p>ROC curves obtained with a linear kernel for scenarios assuming (<b>a</b>) amplitude and (<b>b</b>) phase features. Shaded regions correspond to the 95% confidence interval.</p> "> Figure 16
<p>ROC curves obtained with Gaussian kernel for scenarios assuming (<b>a</b>) amplitude and (<b>b</b>) phase features. Shaded regions correspond to the 95% confidence interval.</p> "> Figure 17
<p>ROC curves for the combination of amplitude and phase training features obtained with (<b>a</b>) linear and (<b>b</b>) Gaussian kernel. Shaded regions correspond to the 95% confidence interval.</p> "> Figure 18
<p>Confusion matrices for test folds: intensity and phase PSDs as training features and linear kernel.</p> ">
Abstract
:1. Introduction
2. Ionospheric Characterisation
2.1. Amplitude and Phase Indices
2.2. Spectral Analysis
3. Data Set
3.1. Ionospheric Conditions
3.2. Data Processing and Labelling
4. Support Vector Machine
4.1. Feature Selection
- Maximum during the occultation segment (1 feature);
- Maximum and mean during the occultation segment (2 features);
- Intensity PSD (257 features);
- Maximum and mean , and intensity PSD (259 features).
- Maximum during the occultation segment (1 features);
- Maximum and mean during the occultation segment (2 features);
- Phase PSD (257 features);
- Maximum and mean , and phase PSD (259 features).
4.2. Performance Evaluation
5. Results
Feature Selection
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wernik, A.W.; Liu, C.H. Ionospheric irregularities causing scintillation of GHz frequency radio signals. J. Atmos. Terr. Phys. 1974, 36, 871–879. [Google Scholar] [CrossRef]
- Yeh, K.C.; Liu, C.H. Radio wave scintillations in the ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar] [CrossRef]
- Aarons, J. Global morphology of ionospheric scintillations. Proc. IEEE 1982, 70, 360–378. [Google Scholar] [CrossRef]
- Basu, S.; MacKenzie, E.; Basu, S. Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci. 1988, 23, 363–378. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Hajj, G.A.; Romans, L.J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Sci. 1998, 33, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Vorob’ev, V.V.; Krasil’nikova, T.G. Estimation of the accuracy of the atmospheric refractive index recovery from doppler shift measurements at frequencies used in the NAVSTAR system. USSR Phys. Atmos. Ocean Engl. Transl. 1994, 29, 602–609. [Google Scholar]
- Syndergaard, S. On the ionosphere calibration in GPS radio occultation measurements. Radio Sci. 2000, 35, 865–883. [Google Scholar] [CrossRef]
- Danzer, J.; Schwaerz, M.; Kirchengast, G.; Healy, S.B. Sensitivity analysis and impact of the kappa-correction of residual ionospheric biases on radio occultation climatologies. Earth Space Sci. 2020, 7. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 1999, 34, 949–966. [Google Scholar] [CrossRef]
- Jakowski, N.; Wehrenpfennig, A.; Heise, S.; Reigber, C.; Lühr, H.; Grunwaldt, L.; Meehan, T.K. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys. Res. Lett. 2002, 29, 95. [Google Scholar] [CrossRef] [Green Version]
- Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N. 3-Dimensional ionospheric electron density reconstruction based on gps measurements. Adv. Space Res. 2003, 31, 1965–1970. [Google Scholar] [CrossRef]
- Angling, M.J.; Cannon, P.S. Assimilation of radio occultation measurements into background ionospheric models. Radio Sci. 2004, 39. [Google Scholar] [CrossRef]
- Lei, J.; Syndergaard, S.; Burns, A.G.; Solomon, S.C.; Wang, W.; Zeng, Z.; Roble, R.G.; Wu, Q.; Kuo, Y.H.; Holt, J.M.; et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Yue, X.; Schreiner, W.S.; Lei, J.; Sokolovskiy, S.V.; Rocken, C.; Hunt, D.C.; Kuo, Y.H. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys. 2010, 28, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Limberger, M.; Hernández-Pajares, M.; Aragón-Ángel, A.; Altadill, D.; Dettmering, D. Long-term comparison of the ionospheric F2 layer electron density peak derived from ionosonde data and Formosat-3/COSMIC occultations. J. Space Weather Space Clim. 2015, 5, A21. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Jakowski, N.; Wilken, V.; Mayer, C. Space weather monitoring by GPS measurements on board CHAMP. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Ao, C.O.; Pi, X.; Iijima, B.A. The impact of large scale ionospheric structure on radio occultation retrievals. Atmos. Meas. Technol. 2011, 4, 2837–2850. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K.; Liu, H.; Pedatella, N.; Ma, G. Global sounding of F region irregularities by COSMIC during a geomagnetic storm. Ann. Geophys. 2019, 37, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Shi, J.; Bai, W.; Galkin, I.; Wang, Z.; Sun, Y. Global ionospheric scintillations revealed by GPS radio occultation data with FY3C satellite before midnight during the March 2015 storm. Adv. Space Res. 2019, 63, 3119–3130. [Google Scholar] [CrossRef]
- Ma, G.; Hocke, K.; Li, J.; Wan, Q.; Lu, W.; Fu, W. GNSS Ionosphere Sounding of Equatorial Plasma Bubbles. Atmosphere 2019, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Kepkar, A.; Arras, C.; Wickert, J.; Schuh, H.; Alizadeh, M.; Tsai, L.C. Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3/COSMIC GPS radio occultation data. Ann. Geophys. 2020, 38, 611–623. [Google Scholar] [CrossRef]
- Anderson, P.C.; Straus, P.R. Magnetic field orientation control of GPS occultation observations of equatorial scintillation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Seif, A.; Liu, J.Y.; Mannucci, A.J.; Carter, B.A.; Norman, R.; Caton, R.G.; Tsunoda, R.T. A Study of Daytime L-Band Scintillation in Association With Sporadic E Along the Magnetic Dip Equator. Radio Sci. 2017, 52, 1570–1577. [Google Scholar] [CrossRef] [Green Version]
- Elkins, T.J.; Papagiannis, M.D. Measurement and interpretation of power spectrums of ionospheric scintillation at a sub-auroral location. J. Geophys. Res. 1969, 74, 4105–4115. [Google Scholar] [CrossRef]
- Rufenach, C.L. Power-law wavenumber spectrum deduced from ionospheric scintillation observations. J. Geophys. Res. 1972, 77, 4761–4772. [Google Scholar] [CrossRef]
- Singleton, D. Power spectra of ionospheric scintillations. J. Atmos. Terr. Phys. 1974, 36, 113–133. [Google Scholar] [CrossRef]
- Rino, C.L. A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Sci. 1979, 14, 1135–1145. [Google Scholar] [CrossRef]
- Rino, C.L. A power law phase screen model for ionospheric scintillation: 2. Strong scatter. Radio Sci. 1979, 14, 1147–1155. [Google Scholar] [CrossRef]
- Carrano, C.S.; Rino, C.L. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results. Radio Sci. 2016, 51, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Umeki, R.; Liu, C.H.; Yeh, K. Multifrequency spectra of ionospheric amplitude scintillations. J. Geophys. Res. 1977, 82, 2752–2760. [Google Scholar] [CrossRef]
- Rufenach, C.L. Power spectra of large scintillation signals. J. Atmos. Terr. Phys. 1975, 37, 569–572. [Google Scholar] [CrossRef]
- Basu, S.; Basu, S.; McClure, J.P.; Hanson, W.B.; Whitney, H.E. High resolution topside in situ data of electron densities and VHF/GHz scintillations in the equatorial region. J. Geophys. Res. 1983, 88, 403–415. [Google Scholar] [CrossRef]
- Franke, S.J.; Liu, C.H. Observations and modeling of multi-frequency VHF and GHz scintillations in the equatorial region. J. Geophys. Res. 1983, 88, 7075. [Google Scholar] [CrossRef]
- Jiao, Y.; Hall, J.J.; Morton, Y.T. Performance Evaluation of an Automatic GPS Ionospheric Phase Scintillation Detector Using a Machine-Learning Algorithm. Navigation 2017, 64, 391–402. [Google Scholar] [CrossRef]
- Linty, N.; Minetto, A.; Dovis, F.; Spogli, L. Effects of Phase Scintillation on the GNSS Positioning Error During the September 2017 Storm at Svalbard. Space Weather 2018, 16, 1317–1329. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Rastogi, R.G. Phase scintillations due to equatorial F region irregularities with two-component power law spectrum. J. Geophys. Res. 1986, 91, 11359. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Yeh, K.; Franke, S. Deducing turbulence parameters from transionospheric scintillation measurements. Space Sci. Rev. 1992, 61, 1992. [Google Scholar] [CrossRef]
- Carrano, C.S.; Groves, K.M.; Caton, R.G.; Rino, C.L.; Straus, P.R. Multiple phase screen modeling of ionospheric scintillation along radio occultation raypaths. Radio Sci. 2011, 46. [Google Scholar] [CrossRef]
- Ludwig-Barbosa, V.; Sievert, T.; Rasch, J.; Carlström, A.; Pettersson, M.I.; Vu, V.T. Evaluation of Ionospheric Scintillation in GNSS Radio Occultation Measurements and Simulations. Radio Sci. 2020, 55. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Vapnik, V. Estimation of Dependences Based on Empirical Data, 1st ed.; Springer: New York, NY, USA, 2006; pp. 1–505. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory—COLT ’92, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Jiao, Y.; Hall, J.J.; Morton, Y.T. Automatic Equatorial GPS Amplitude Scintillation Detection Using a Machine Learning Algorithm. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 405–418. [Google Scholar] [CrossRef]
- McGranaghan, R.M.; Mannucci, A.J.; Wilson, B.; Mattmann, C.A.; Chadwick, R. New Capabilities for Prediction of High-Latitude Ionospheric Scintillation: A Novel Approach With Machine Learning. Space Weather 2018, 16, 1817–1846. [Google Scholar] [CrossRef] [Green Version]
- Linty, N.; Farasin, A.; Favenza, A.; Dovis, F. Detection of GNSS Ionospheric Scintillations Based on Machine Learning Decision Tree. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 303–317. [Google Scholar] [CrossRef]
- Cardellach, E.; Oliveras, S. Assessment of a Potential Reflection Flag Product; Technical Report 23; IEEC/ROM SAF: Barcelona, Spain, 2016. [Google Scholar]
- Hu, A.; Wu, S.; Wang, X.; Wang, Y.; Norman, R.; He, C.; Cai, H.; Zhang, K. Improvement of Reflection Detection Success Rate of GNSS RO Measurements Using Artificial Neural Network. IEEE Trans. Geosci. Remote 2018, 56, 760–769. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Wickert, J.; Pavelyev, A.G.; Liou, Y.A.; Schmidt, T.; Reigber, C.; Igarashi, K.; Pavelyev, A.A.; Matyugov, S.S. Amplitude variations in GPS signals as a possible indicator of ionospheric structures. Geophys. Res. Lett. 2004, 31, L24801. [Google Scholar] [CrossRef]
- Briggs, B.; Parkin, I. On the variation of radio star and satellite scintillations with zenith angle. J. Atmos. Terr. Phys. 1963, 25, 339–366. [Google Scholar] [CrossRef]
- Syndergaard, S. COSMIC S4 Data; UCAR/CDAAC: Boulder, CO, USA, 2006. [Google Scholar]
- Fremouw, E.J.; Leadabrand, R.L.; Livingston, R.C.; Cousins, M.D.; Rino, C.L.; Fair, B.C.; Long, R.A. Early results from the DNA Wideband satellite experiment-Complex-signal scintillation. Radio Sci. 1978, 13, 167–187. [Google Scholar] [CrossRef]
- Forte, B.; Radicella, S.M. Problems in data treatment for ionospheric scintillation measurements. Radio Sci. 2002, 37, 8. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Morton, Y.; Jiao, Y.; Triplett, J.; Pelgrum, W. An improved ionosphere scintillation event detection and automatic trigger for a GNSS data collection system. Inst. Navig. Int. Tech. Meet. 2012, 2, 1563–1569. [Google Scholar]
- Sokolovskiy, S.; Schreiner, W.; Rocken, C.; Hunt, D. Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Sokolovskiy, S. Effect of sporadic E clouds on GPS radio occultation signals. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal Detection of Changepoints With a Linear Computational Cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Pirscher, B.; Foelsche, U.; Lackner, B.C.; Kirchengast, G. Local time influence in single-satellite radio occultation climatologies from Sun-synchronous and non-Sun-synchronous satellites. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Béniguel, Y.; Cherniak, I.; Garcia-Rigo, A.; Hamel, P.; Hernández-Pajares, M.; Kameni, R.; Kashcheyev, A.; Krankowski, A.; Monnerat, M.; Nava, B.; et al. MONITOR Ionospheric Network: Two case studies on scintillation and electron content variability. Ann. Geophys. 2017, 35, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, W.; Sokolovskiy, S.; Hunt, D.; Rocken, C. Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and Metop/GRAS missions at CDAAC. Atmos. Meas. Tech. 2011, 4, 2255–2272. [Google Scholar] [CrossRef] [Green Version]
- Muller, K.R.; Mika, S.; Ratsch, G.; Tsuda, K.; Scholkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Criteria | Description | Label |
---|---|---|
Low-scintillation cases | (Removed) | |
Sporadic E-layer [59] | Occultations with U-shaped fade and corresponding to less than 50% of the plateau | (Removed) |
S-type disturbances [52] | Occultation with quasi-regular disturbances and corresponding to less than 50% of the plateau | (Removed) |
Others | PSD without clear trend of monotonic or double-slope inverse power law or inconclusive PSD | 0 |
PSD with trend of monotonic or double-slope inverse power law | 1 |
Training Vector | Accuracy | Precision | Recall | F-Score | TPR | FPR |
---|---|---|---|---|---|---|
0.724 | 0.152 | |||||
, | 0.711 | 0.130 | ||||
intPSD | 0.892 | 0.130 | ||||
, , intPSD | 0.881 | 0.109 | ||||
0.623 | 0.326 | |||||
, | 0.593 | 0.174 | ||||
phsPSD | 0.865 | 0.087 | ||||
, , phs PSD | 0.853 | 0.087 |
Training Vector | Accuracy | Precision | Recall | F-Score | TPR | FPR |
---|---|---|---|---|---|---|
0.724 | 0.152 | |||||
, | 0.719 | 0.130 | ||||
intPSD | 0.879 | 0.109 | ||||
, , intPSD | 0.833 | 0.065 | ||||
0.632 | 0.326 | |||||
, | 0.634 | 0.196 | ||||
phsPSD | 0.872 | 0.109 | ||||
, , phs PSD | 0.853 | 0.087 |
Training Vector | C | Accuracy | Precision | Recall | F-Score | TPR | FPR | |
---|---|---|---|---|---|---|---|---|
PSDs | 0.005 | - | 0.880 | 0.065 | ||||
, PSDs | 0.006 | - | 0.880 | 0.065 | ||||
, , PSDs | 0.006 | - | 0.888 | 0.065 | ||||
PSDs | 72 693 | 4 314 | 0.882 | 0.065 | ||||
, PSDs | 2 597 | 1 019 | 0.887 | 0.065 | ||||
, , PSDs | 47 637 | 3 560 | 0.903 | 0.087 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig-Barbosa, V.; Sievert, T.; Carlström, A.; Pettersson, M.I.; Vu, V.T.; Rasch, J. Supervised Detection of Ionospheric Scintillation in Low-Latitude Radio Occultation Measurements. Remote Sens. 2021, 13, 1690. https://doi.org/10.3390/rs13091690
Ludwig-Barbosa V, Sievert T, Carlström A, Pettersson MI, Vu VT, Rasch J. Supervised Detection of Ionospheric Scintillation in Low-Latitude Radio Occultation Measurements. Remote Sensing. 2021; 13(9):1690. https://doi.org/10.3390/rs13091690
Chicago/Turabian StyleLudwig-Barbosa, Vinícius, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet T. Vu, and Joel Rasch. 2021. "Supervised Detection of Ionospheric Scintillation in Low-Latitude Radio Occultation Measurements" Remote Sensing 13, no. 9: 1690. https://doi.org/10.3390/rs13091690
APA StyleLudwig-Barbosa, V., Sievert, T., Carlström, A., Pettersson, M. I., Vu, V. T., & Rasch, J. (2021). Supervised Detection of Ionospheric Scintillation in Low-Latitude Radio Occultation Measurements. Remote Sensing, 13(9), 1690. https://doi.org/10.3390/rs13091690