The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework
<p>Map of Japan and Mabi-town, Okayama Prefecture as a target area.</p> "> Figure 2
<p>SAR image of Mabi-town, (<b>a</b>) Data on 14 April 2018 (JST), (<b>b</b>) Data on 8 July 2018 (JST).</p> "> Figure 3
<p>Flooded and nonflooded areas interpreted by news media photographs with publication dates.</p> "> Figure 4
<p>Overview of the study.</p> "> Figure 5
<p>The method how to extract value from interior and surrounding pixels of building.</p> "> Figure 6
<p>Density distribution of the features. Red and blue lines show the flooded and nonflooded buildings, respectively.</p> "> Figure 7
<p>The learning curve, (<b>a</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math> (Training data on 7 July), (<b>b</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>2</mn> </msub> </semantics></math> (Training data until 8 July), (<b>c</b>) <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math> (Training data until 9 July).</p> "> Figure 8
<p>SVM estimating result using <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math> training data.</p> ">
Abstract
:1. Introduction
- The staff is prepared to act immediately;
- Remote-controlled cameras strategically placed on top of tall buildings and pointing to the society and hazardous areas (i.e., volcanoes, nuclear power plant);
- Camera crews that are out to send information, videos, and images;
- Helicopters to deploy for coverage of the news;
- They operate in satellite and cable network communication systems.
2. Target Area, Data Sets, and Analysis Flow
2.1. 2018 Japan Floods
2.2. Land Observation by ALOS-2
2.3. The Flow of Analysis, News-Based Truth Data, and GSI Flood Map
3. Feature Space and Discriminant Function
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houston, D.; Werritty, A.; Bassett, D.; Geddes, A.; Hoolachan, A.; McMillan, M. Pluvial (Rain-Related) Flooding in Urban Areas: The Invisible Hazard; Joseph Rowntree Foundation: York, UK, 2011. [Google Scholar]
- Skougaard Kaspersen, P.; Høegh Ravn, N.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M. Influence of urban land cover changes and climate change for the exposure of European cities to flooding during high-intensity precipitation. Proc. Int. Assoc. Hydrol. Sci. (IAHS) 2015, 370, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, M.; Casado, M.R.; Salmoral, G.; Irvine, T.; Leinster, P. A remote sensing based integrated approach to quantify the impact of fluvial and pluvial flooding in an urban catchment. Remote Sens. 2019, 11, 577. [Google Scholar] [CrossRef] [Green Version]
- Mas, E.; Paulik, R.; Pakoksung, K.; Adriano, B.; Moya, L.; Suppasri, A.; Muhari, A.; Khomarudin, R.; Yokoya, N.; Matsuoka, M.; et al. Characteristics of Tsunami Fragility Functions Developed Using Different Sources of Damage Data from the 2018 Sulawesi Earthquake and Tsunami. Pure Appl. Geophys. 2020, 177, 2437–2455. [Google Scholar] [CrossRef]
- Scarpino, S.; Albano, R.; Cantisani, A.; Mancusi, L.; Sole, A.; Milillo, G. Multitemporal SAR data and 2D hydrodynamic model flood scenario dynamics assessment. ISPRS Int. J. Geoinf 2018, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Englhardt, J.; De Moel, H.; Huyck, C.K.; De Ruiter, M.C.; Aerts, J.C.; Ward, P.J. Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas. Nat. Hazards Earth Syst. Sci. 2019, 19, 1703–1722. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yamazaki, F. Review article: Detection of inundation areas due to the 2015 Kanto and Tohoku torrential rain in Japan based on multi-temporal ALOS-2 imagery. Nat. Hazards Earth Syst. Sci. 2018, 18, 1905–1918. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Endo, Y.; Okada, G.; Koshimura, S.; Mas, E. Drawback in the Change Detection Approach: False Detection during the 2018 Western Japan Floods. Remote Sens. 2019, 11, 2320. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Mas, E.; Koshimura, S. Learning from the 2018 Western Japan Heavy Rains to Detect Floods during the 2019 Hagibis Typhoon. Remote Sens. 2020, 12, 2244. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Natsuaki, R.; Nagai, H. Synthetic Aperture Radar Flood Detection under Multiple Modes and Multiple Orbit Conditions: A Case Study in Japan on Typhoon Hagibis, 2019. Remote Sens. 2020, 12, 903. [Google Scholar] [CrossRef] [Green Version]
- Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami Damage Detection with Remote Sensing: A Review. Geosciences 2020, 10, 177. [Google Scholar] [CrossRef]
- Moya, L.; Muhari, A.; Adriano, B.; Koshimura, S.; Mas, E.; Marval-Perez, L.R.; Yokoya, N. Detecting urban changes using phase correlation and l1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sens Environ. 2020, 242, 111743. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M.; Schlaffer, S.; Natsuaki, R. Urban flood mapping using SAR intensity and interferometric coherence via Bayesian network fusion. Remote Sens. 2019, 11, 2231. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Forster, B.; Ticehurst, C. Radar backscatter analysis for urban environments. Int. J. Remote Sens. 1997, 18, 1351–1364. [Google Scholar] [CrossRef]
- Iervolino, P.; Member, S.; Guida, R.; Iodice, A.; Member, S.; Riccio, D. Flooding Water Depth Estimation With High-Resolution SAR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2295–2307. [Google Scholar] [CrossRef] [Green Version]
- Ohki, M.; Tadono, T.; Itoh, T.; Ishii, K.; Yamanokuchi, T.; Watanabe, M.; Shimada, M. Flood Area Detection Using PALSAR-2 Amplitude and Coherence Data: The Case of the 2015 Heavy Rainfall in Japan. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 2288–2298. [Google Scholar] [CrossRef]
- Insom, P.; Cao, C.; Boonsrimuang, P.; Liu, D.; Saokarn, A.; Yomwan, P.; Xu, Y. A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1943–1947. [Google Scholar] [CrossRef]
- Moya, L.; Zakeri, H.; Yamazaki, F.; Liu, W.; Mas, E.; Koshimura, S. 3D gray level co-occurrence matrix and its application to identifying collapsed buildings. ISPRS J. Photogramm. Remote Sens. 2019, 149, 14–28. [Google Scholar] [CrossRef]
- Dumitru, C.O.; Cui, S.; Faur, D.; Datcu, M. Data Analytics for Rapid Mapping: Case Study of a Flooding Event in Germany and the Tsunami in Japan Using Very High Resolution SAR Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 114–129. [Google Scholar] [CrossRef]
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Martinis, S. A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sens. 2019, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A Framework of Rapid Regional Tsunami Damage Recognition From Post-event TerraSAR-X Imagery Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2018, 15, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Marval Perez, L.R.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F. Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions. Remote Sens. 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F.; Liu, W. An integrated method to extract collapsed buildings from satellite imagery, hazard distribution and fragility curves. Int. J. Disaster Risk Reduct. 2018, 31, 1374–1384. [Google Scholar] [CrossRef]
- Guion, D.T.; Scammon, D.L.; Borders, A.L. Weathering the Storm: A Social Marketing Perspective on Disaster Preparedness and Response with Lessons from Hurricane Katrina. J. Public Policy Mark. 2007, 26, 20–32. [Google Scholar] [CrossRef]
- Hernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, K.; Perez-Meana, H.; Portillo-Portillo, J.; Sanchez, V.; Villalba, L.J.G. Using Twitter Data to Monitor Natural Disaster Social Dynamics: A Recurrent Neural Network Approach with Word Embeddings and Kernel Density Estimation. Sensors 2019, 19, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.B.; Palen, L.; Sutton, J.; Hughes, A.L.; Vieweg, S. In search of the bigger picture: The emergent role of on-line photo sharing in times of disaster. In Proceedings of the Information Systems for Crisis Response and Management Conference, Washington, DC, USA, 4–7 May 2018. [Google Scholar]
- Sato, T. How Did NHK Cover the Great East Japan Earthquake?—Challenges and Prospects of Transnational Disaster Reports International Broadcast through the NHK World TV. 2012. Available online: https://www.jamco.or.jp/en/symposium/20/3/ (accessed on 25 August 2020).
- Kerle, N.; Stekelenburg, R.; van den Heuvel, F.; Gorte, B. Near-Real Time Post-Disaster Damage Assessment with Airborne Oblique Video Data. In Geo-information for Disaster Management; Springer: Berlin/Heidelberg, Gerany, 2005; pp. 337–353. [Google Scholar]
- The Yomiuri Shimbun. West Japan Record Heavy Rain. 2018. Available online: https://www.yomiuri.co.jp/s/ims/flood201807/ (accessed on 28 September 2020).
- The Mainichi Newspapers. Heavy Rains in Western Japan: House, Crushing Earth and Sand Town, Water Soaking at Once. 2018. Available online: https://mainichi.jp/articles/20180708/ddn/041/040/010000c (accessed on 28 September 2020).
- The Asahi Shimbun. Large-Scale Flood Damage in Kurashiki Some Areas Are Flooded to the Roof. 2018. Available online: https://www.asahi.com/articles/ASL7730PCL77PTIL00C.html (accessed on 28 September 2020).
- Jiji Press Ltd. Western Japan Heavy Rain Photo Special Feature. 2018. Available online: https://www.jiji.com/jc/d4?p=hrt706-jpp027636021&d=d4_et (accessed on 25 September 2020).
- All-Nippon News Network. Appearance of the Building Gradually … Drainage Work of the River that Broke in Okayama Proceeds. 2018. Available online: https://news.tv-asahi.co.jp/news_society/articles/000131309.html (accessed on 25 September 2020).
- Shi, D.; Yang, X. Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Dordrecht, The Netherlands, 2015; pp. 265–279, Chapter 13. [Google Scholar]
- Dhara, S.; Dang, T.; Parial, K.; Lu, X.X. Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of Can Tho City, Vietnam. Water 2020, 12, 1543. [Google Scholar] [CrossRef]
- Syifa, M.; Park, S.J.; Achmad, A.R.; Lee, C.W.; Eom, J.; Eom, J. Flood mapping using remote sensing imagery and artificial intelligence techniques: A case study in Brumadinho, Brazil. J. Coast. Res. 2019, 90, 197–204. [Google Scholar] [CrossRef]
- Cabinet Office of Japan. Reiwa 1st Year Edition Disaster Prevention White Paper. 2019. Available online: http://www.bousai.go.jp/kaigirep/hakusho/h31/honbun/0b_1s_01_01.html (accessed on 28 September 2020).
- Exelis Visual Information Solutions. SARscape Help Manual; Exelis Visual Information Solutions: Boulder, CO, USA, 2015. [Google Scholar]
- Geospatial Information Authority of Japan, Information about the July 2018 Heavy Rain. 2018. Available online: https://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html (accessed on 25 September 2020).
- Blasco, J.M.D.; Fitrzyk, M.; Patruno, J.; Ruiz-Armenteros, A.M.; Marconcini, M. Effects on the double bounce detection in urban areas based on SAR polarimetric characteristics. Remote Sens. 2020, 12, 1187. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.Y.; Wen, T.H. Extracting urban water bodies from high-resolution radar images: Measuring the urban surface morphology to control for radar’s double-bounce effect. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102003. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. Learn. Syst. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jia, Z.; Yang, J.; Kasabov, N.K. SAR Image Change Detection Based on Mathematical Morphology and the K-Means Clustering Algorithm. IEEE Access 2019, 7, 43970–43978. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hasegawa, H.; Yamazaki, F.; Matsuoka, M.; Sekimoto, I. Determination of building damage due to earthquakes using aerial television images. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zeland, 30 January–4 February 2000. CD-ROM. [Google Scholar]
- Joint UNEP/OCHA Environment Unit. Disaster Waste Management Guidelines. 2011. Available online: https://www.unocha.org/sites/dms/Documents/DWMG.pdf (accessed on 15 March 2021).
News Media | Publishing Time |
---|---|
The Yomiuri Shimbun [32] | 0:33 p.m. on 7 July |
The Mainichi Newspapers [33] | 0:41 p.m. on 7 July |
The Asahi Shimbun [34] | 0:49 p.m. on 7 July |
Jiji Press Ltd. [35] | Afternoon on 8 July |
All-Nippon News Network [36] | 11:48 a.m. on 9 July |
Prediction Result | ||||
---|---|---|---|---|
Flooded Building | Non-Flooded Building | Total | ||
Truth | Flooded building | 105 | 5 | 110 |
Non-flooded building | 17 | 35 | 52 | |
Total | 122 | 40 | 162 |
Recall | Precision | F1 | |
---|---|---|---|
Flooded building | 0.86 | 0.95 | 0.91 |
Non-flooded building | 0.88 | 0.67 | 0.76 |
Average | 0.87 | 0.81 | 0.83 |
Prediction Result | ||||
---|---|---|---|---|
Flooded Building | Non-Flooded Building | Total | ||
Truth | Flooded building | 64 | 46 | 110 |
Non-flooded building | 3 | 49 | 52 | |
Total | 67 | 95 | 162 |
Recall | Precision | F1 | |
---|---|---|---|
Flooded building | 0.96 | 0.58 | 0.72 |
Non-flooded building | 0.48 | 0.94 | 0.64 |
Average | 0.72 | 0.81 | 0.68 |
Source of Training Data | Flooded Building | Nonflooded Building | Recall (%) |
---|---|---|---|
3119 | 1272 | 71.0 | |
3603 | 788 | 82.1 | |
3642 | 749 | 82.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, G.; Moya, L.; Mas, E.; Koshimura, S. The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework. Remote Sens. 2021, 13, 1401. https://doi.org/10.3390/rs13071401
Okada G, Moya L, Mas E, Koshimura S. The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework. Remote Sensing. 2021; 13(7):1401. https://doi.org/10.3390/rs13071401
Chicago/Turabian StyleOkada, Genki, Luis Moya, Erick Mas, and Shunichi Koshimura. 2021. "The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework" Remote Sensing 13, no. 7: 1401. https://doi.org/10.3390/rs13071401
APA StyleOkada, G., Moya, L., Mas, E., & Koshimura, S. (2021). The Potential Role of News Media to Construct a Machine Learning Based Damage Mapping Framework. Remote Sensing, 13(7), 1401. https://doi.org/10.3390/rs13071401