A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1
"> Figure 1
<p>Area S30E148 in Shuttle Radar Topography Mission 1 (SRTM 1) containing spikes, speckles and multidirectional stripe errors (unit: meter). (<b>a</b>) The original data, (<b>c</b>) the local enlargement of the spike-error area and (<b>e</b>) the local enlargement of the mixed-error area. The second column (<b>b</b>,<b>d</b>,<b>f</b>) contains the data corresponding to panels a, c and e, respectively, after removing the errors using the proposed low-rank group-sparse method (LRGS).</p> "> Figure 2
<p>SRTM 1 data and the terrain of some experimental areas. (<b>a</b>) SRTM 1. Local enlargement of (<b>b</b>) area b, (<b>c</b>) area c, (<b>d</b>) area d marked by the corresponding letters in the figure.</p> "> Figure 3
<p>The interference of stripe errors on different gradient directions. The minimum elevation in this area is 293 m, the maximum elevation is 2000 m, and the maximum elevation difference is 1700 m. Analyzing the gradient decomposition in this rugged landscape, stripes of the regular distribution mainly affected the data for an elevational gradient in the direction orthogonal to it. In this experiment, stripe errors severely interfere with the horizontal gradient of the data. (<b>a</b>) Data with stripe errors, (<b>b</b>) clean data, (<b>c</b>) horizontal gradient of a, (<b>d</b>) vertical gradient of a, (<b>e</b>) horizontal gradient of b, (<b>f</b>) vertical gradient of b, (<b>g</b>) gradient intensity of c, (<b>h</b>) gradient intensity of d, (<b>i</b>) gradient intensity of e and (<b>j</b>) gradient intensity of f.</p> "> Figure 3 Cont.
<p>The interference of stripe errors on different gradient directions. The minimum elevation in this area is 293 m, the maximum elevation is 2000 m, and the maximum elevation difference is 1700 m. Analyzing the gradient decomposition in this rugged landscape, stripes of the regular distribution mainly affected the data for an elevational gradient in the direction orthogonal to it. In this experiment, stripe errors severely interfere with the horizontal gradient of the data. (<b>a</b>) Data with stripe errors, (<b>b</b>) clean data, (<b>c</b>) horizontal gradient of a, (<b>d</b>) vertical gradient of a, (<b>e</b>) horizontal gradient of b, (<b>f</b>) vertical gradient of b, (<b>g</b>) gradient intensity of c, (<b>h</b>) gradient intensity of d, (<b>i</b>) gradient intensity of e and (<b>j</b>) gradient intensity of f.</p> "> Figure 4
<p>Analyzing the gradient decomposition in this experimental area (unit: meter), Mixed noise interferes with data in both gradient directions. The stripe structure in the local range is similar to the line structure, so the rank of the matrix is near 1, and the 2-norm values in the striped column and the unstriped column in the local region have obvious peak-to-valley contrasts. (<b>a</b>) The original Data, local data and mixed errors magnification, (<b>b</b>) processed data, (<b>c</b>) horizontal gradient of original data, (<b>d</b>) vertical gradient of original data, (<b>e</b>) gradient intensity of c, (<b>f</b>) gradient intensity of d, (<b>g</b>) statistics of local mixed errors singular values in a, (<b>h</b>) 2-norm statistics of local mixed errors in a, (<b>i</b>) horizontal gradient of b, (<b>j</b>) vertical gradient of b, (<b>k</b>) gradient intensity of i and (<b>l</b>) gradient intensity of j.</p> "> Figure 5
<p>Results of the simulation experiment for area N01E12 with vertical stripes and random-noise mixing errors (unit: meter). (<b>a</b>) Original N01E12 area (PSNR, SSIM), (<b>b</b>) mixed error (30.01, 0.5511) added, (<b>c</b>) low-pass filter (29.19, 0.4322), (<b>d</b>) total variation (TV) (30.76, 0.5460), (<b>e</b>) Unidirectional Total Variation (UTV) (29.95, 0.5179), (<b>f</b>) Low-Rank based Single-Image Decomposition (LRSID) (30.48, 0.6617) and (<b>g</b>) low rank group-sparse method (LRGS) (30.94, 0.8319).</p> "> Figure 6
<p>Local enlargement of the results of the simulation experiment for area N01E12 (<a href="#remotesensing-13-01346-f005" class="html-fig">Figure 5</a>). Local enlargements for (<b>a</b>) area N01E12, (<b>b</b>) mixed error added, (<b>c</b>) low-pass filter, (<b>d</b>) TV, (<b>e</b>) UTV, (<b>f</b>) LRSID and (<b>g</b>) LRGS.</p> "> Figure 7
<p>Results of the simulation experiment for area N01E12 with oblique stripes and random-noise mixing errors (unit: meter). (<b>a</b>) Original area N01E12, (<b>b</b>) mixed error added (29.85, 0.5370), (<b>c</b>) low-pass filter (29.13, 0.4297), (<b>d</b>) TV (30.65, 0.5400), (<b>e</b>) UTV (29.78, 0.5013), (<b>f</b>) LRSID (30.26, 0.6259) and (<b>g</b>) LRGS (30.60, 0.7213).</p> "> Figure 8
<p>Local enlargement of the results of the simulation experiment for area N01E12 (<a href="#remotesensing-13-01346-f007" class="html-fig">Figure 7</a>). Local enlargements for (<b>a</b>) area N01E12, (<b>b</b>) mixed error added, (<b>c</b>) low-pass filter, (<b>d</b>) TV, (<b>e</b>) UTV, (<b>f</b>) LRSID and (<b>g</b>) LRGS.</p> "> Figure 9
<p>Results of the real experiment for area S31E147 (unit: meter). (<b>a</b>) Original S31E147 area, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 10
<p>Results of the real experiment for the local enlargement of area S31E147 (<a href="#remotesensing-13-01346-f009" class="html-fig">Figure 9</a>). Local enlargements for (<b>a</b>) area S31E147, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 11
<p>Mean cross-track profiles of the results of the real experiment for area S31E147 (unit: meter). (<b>a</b>) Area S31E147, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 12
<p>Results of the real experiment for area S35E144 (unit: meter). (<b>a</b>) Original area S35E144, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 13
<p>Results of the real experiment for the local enlargement of area S35E144 (<a href="#remotesensing-13-01346-f012" class="html-fig">Figure 12</a>). Local enlargements for (<b>a</b>) area S35E144, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 14
<p>Results of the real experiment for area S36E144 (unit: meter). (<b>a</b>) Original area S36E144, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 15
<p>Results of the real experiment for the local enlargement of area S36E144 (<a href="#remotesensing-13-01346-f014" class="html-fig">Figure 14</a>). Local enlargements for (<b>a</b>) area S36E144, (<b>b</b>) low-pass filter, (<b>c</b>) TV, (<b>d</b>) UTV, (<b>e</b>) LRSID, (<b>f</b>) Gallant and (<b>g</b>) LRGS.</p> "> Figure 16
<p>The gradient changes and the local 3Dmodel of the data. (<b>a</b>) Horizontal gradient of area S35E144, (<b>b</b>) vertical gradient of area S35E144, (<b>c</b>) horizontal gradient of area S35E144 using the proposed method, (<b>d</b>) vertical gradient of area S35E144 area using the proposed method, (<b>e</b>) local enlargement of area S35E144, (<b>f</b>) local enlargement of area S35E144 area after removing the error using LRGS.</p> ">
Abstract
:1. Introduction
- The discovery of the inherent characteristics of mixed errors in local areas for extracting the low-rank sparse structure of multidirectional stripe errors while unifying the nonlocal sparsity of random noise to eliminate mixing errors;
- The proposal of an algorithm based on alternating directions of the multiplier to ensure the convergence of the proposed recovery model.
2. Materials and Methods
2.1. Materials
2.2. Features of Mixed Errors
2.3. Model of Data Structure
2.4. Local Low-Rank Sparse Regularization
2.5. Proposed Model and Optimization
Algorithm 1 ADMM-based error elimination |
Input |
1: initialization: , , , , , , , , |
2: While does not converge do |
3: Update , , , : |
4: by Equation (13) |
5: by Equation (15) |
6: by Equation (17) |
7: by Equation (19) |
8: Update , : |
9: |
by Equation (21) |
10: , , , : |
11: |
12: |
13: |
14: |
15: Update , |
16: End while |
17: Output: |
2.6. Experimental Design and Quantitative Assessments
3. Results
3.1. Simulated Experiments
3.2. Real Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirt, C. Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sens. Environ. 2018, 207, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhu, C.; Gold, C. Digital Terrain Modeling: Principles and Methodology; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Takaku, J.; Iwasaki, A.; Tadono, T. Adaptive filter for improving quality of ALOS PRISM DSM. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016, Beijing, China, 10–15 July 2016; pp. 5370–5373. [Google Scholar]
- Rodriguez, E.; Morris, C.S.; Belz, J.E.J.P.E.; Sensing, R. A global assessment of the SRTM performance. Photogramm. Eng. Remote. Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Gallant, J. Adaptive smoothing for noisy DEMs. Geomorphometry. Available online: http://geomorphometry.org/Gallant2011 (accessed on 7 September 2011).
- Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castaneda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Oimoen, M.J. An effective filter for removal of production artifacts in US Geological Survey 7.5-minute digital elevation models. In Proceedings of the Fourteenth International Conference on Applied Geologic Remote Sensing, Las Vegas, NV, USA, 6–8 November 2000; pp. 6–8. [Google Scholar]
- Gallant, J.C.; Read, A.M. A near-Global Bare-Earth Dem from Srtm. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 137–141. [Google Scholar] [CrossRef]
- Real, V.; Lucas, C. A Novel Noise Removal Algorithm for Vertical Artifacts in Digital Elevation Models. In Proceedings of the 34th Asian Conference on Remote Sensing (ACRS), São Paulo, Brazil, 20–24 October 2013; pp. 20–24. [Google Scholar]
- Lewington, E.L.M.; Livingstone, S.J.; Sole, A.J.; Clark, C.D.; Ng, F.S.L. An automated method for mapping geomorphological expressions of former subglacial meltwater pathways (hummock corridors) from high resolution digital elevation data. Geomorphology 2019, 339, 70–86. [Google Scholar] [CrossRef]
- Kang, W.; Yu, S.; Seo, D.; Jeong, J.; Paik, J. Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering. Sensors 2015, 15, 22826–22853. [Google Scholar] [CrossRef] [Green Version]
- Gallant. 1secSRTM Derived DEMs UserGuide v1.0.4; Geoscience Australia, Symonston ACT: Canberra, Australia, 2011.
- Jiang, T.X.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Wang, Y. FastDeRain: A Novel Video Rain Streak Removal Method Using Directional Gradient Priors. IEEE Trans. Image Process. 2019, 28, 2089–2102. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.K.; Ngan, H.Y.T.; Yuan, X.M.; Zhang, W.X. Lattice-Based Patterned Fabric Inspection by Using Total Variation with Sparsity and Low-Rank Representations. SIAM J. Imaging Sci. 2017, 10, 2140–2164. [Google Scholar] [CrossRef]
- Cao, J.J.; Wang, N.N.; Zhang, J.; Wen, Z.J.; Li, B.; Liu, X.P. Detection of varied defects in diverse fabric images via modified RPCA with noise term and defect prior. Int. J. Cloth. Sci. Technol. 2016, 28, 516–529. [Google Scholar] [CrossRef]
- Feng, L.L.; Liu, Y.P.; Chen, L.X.; Zhang, X.; Zhu, C. Robust block tensor principal component analysis. Signal Process. 2020, 166, 13. [Google Scholar] [CrossRef]
- Xiaoqun, Z.; Tony, F.C. Wavelet inpainting by nonlocal total variation. Inverse Probl. Imaging 2010, 4, 191–210. [Google Scholar]
- Ortiz, J.D.; Avouris, D.M.; Schiller, S.J.; Luvall, J.C.; Lekki, J.D.; Tokars, R.P.; Anderson, R.C.; Shuchman, R.; Sayers, M.; Becker, R. Evaluating visible derivative spectroscopy by varimax-rotated, principal component analysis of aerial hyperspectral images from the western basin of Lake Erie. J. Gt. Lakes Res. 2019, 45, 522–535. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, X.L.; Ma, T.H.; Chen, Y.; Huang, T.Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Zhao, X.L. Destriping of Multispectral Remote Sensing Image Using Low-Rank Tensor Decomposition. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 4950–4967. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.X.; Wu, T.; Zhong, S. Remote Sensing Image Stripe Noise Removal: From Image Decomposition Perspective. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7018–7031. [Google Scholar] [CrossRef]
- Dou, H.X.; Huang, T.Z.; Deng, L.J.; Zhao, X.L.; Huang, J. Directional l(0) Sparse Modeling for Image Stripe Noise Removal. Remote Sens. 2018, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.H.; Sigworth, F.J.; Brandt, S.S. Removal of Vesicle Structures From Transmission Electron Microscope Images. IEEE Trans. Image Process. 2016, 25, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Xavier, B.; Tony, F.C. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2008, 2, 455–484. [Google Scholar]
- Bouali, M.; Ladjal, S. Toward Optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2924–2935. [Google Scholar] [CrossRef]
- Guth, P.L.J.P.E.; Sensing, R. Geomorphometry from SRTM. Photogramm. Eng. Remote Sens. 2006, 72, 269–277. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. Nasadem global elevation model: Methods and progress. In Proceedings of the 23rd International Archives of the Photogrammetry, Prague, Czech Republic, 12–19 July 2016; pp. 125–128. [Google Scholar]
- Polidori, L.; El Hage, M.; Valeriano, M.D. Digital Elevation Model Validation with No Ground Control: Application to The Topodata Dem in Brazil. Bol. Cienc. Geod. 2014, 20, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.D.; Ganesh, A.; Liang, X.; Ma, Y. TILT: Transform Invariant Low-Rank Textures. Int. J. Comput. Vis. 2012, 99, 1–24. [Google Scholar] [CrossRef]
- Eckstein, J.; Bertsekas, D.P. On the Douglas-Rachford Splitting Method And The Proximal Point Algorithm for Maximal Monotone-Operators. Math. Program. 1992, 55, 293–318. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Cai, J.F.; Candes, E.J.; Shen, Z.W. A Singular Value Thresholding Algorithm for Matrix Completion. Siam J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Wright, S.J.; Nowak, R.D.; Figueiredo, M.A.T. Sparse Reconstruction by Separable Approximation. IEEE Trans. Signal Process. 2009, 57, 2479–2493. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.R.; Huang, T.Z.; Liu, J.; Zhao, X.L.J.P.O. Compressive Sensing via Nonlocal Smoothed Rank Function. PLoS ONE 2016, 11, e0162041. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, C.; Wang, M.; Zhang, H.; Chen, H.; Sun, H.; Chang, Y.; Yang, Q. A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1. Remote Sens. 2021, 13, 1346. https://doi.org/10.3390/rs13071346
Ge C, Wang M, Zhang H, Chen H, Sun H, Chang Y, Yang Q. A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1. Remote Sensing. 2021; 13(7):1346. https://doi.org/10.3390/rs13071346
Chicago/Turabian StyleGe, Chenyu, Mengmeng Wang, Hongming Zhang, Huan Chen, Hongguang Sun, Yi Chang, and Qinke Yang. 2021. "A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1" Remote Sensing 13, no. 7: 1346. https://doi.org/10.3390/rs13071346
APA StyleGe, C., Wang, M., Zhang, H., Chen, H., Sun, H., Chang, Y., & Yang, Q. (2021). A Low-Rank Group-Sparse Model for Eliminating Mixed Errors in Data for SRTM1. Remote Sensing, 13(7), 1346. https://doi.org/10.3390/rs13071346