Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods
<p>Entire methodology adopted in this study on machine-learning process for olive-tree phenology prediction model. Flowchart provides a graphical cue for the sequence of steps in the modeling process.</p> "> Figure 2
<p>Hierarchical clustering on Spearman rank order and corresponding heat map of correlated features.</p> "> Figure 3
<p>Root-mean-square error (RMSE) statistics (minimum, quartile at 25%, mean, quartile at 75%, and maximum) of baseline model for GEE vs weather-station temperature measurements.</p> "> Figure 4
<p>Accuracy comparison performed for distinct tolerance ranges.</p> "> Figure 5
<p>Accuracy comparison for (<b>a</b>) recursive feature elimination (RFE) and (<b>b</b>) recursive feature addition (RFA) feature-selection strategies.</p> "> Figure 6
<p>Olive-phenology predictions based on random-forest regressor model. (<b>a</b>) Recursive feature addition considering priority ranking depicted at <a href="#remotesensing-13-01224-t002" class="html-table">Table 2</a>. (<b>b</b>) Accuracy comparison between most efficient feature combinations.</p> "> Figure 7
<p>Performance comparability of K-neighbors regressor, random-forest regressor, random-forest classifier, gradient-boosting classifier, extra-tree regressor, extra-tree classifier, decision-tree classifier, and GDD baseline models, respectively.</p> "> Figure 8
<p>Extra-tree regressor model prediction for distinct feature-selection techniques. (<b>a</b>) Feature addition depending on weighted metric ordering detailed in <a href="#remotesensing-13-01224-t002" class="html-table">Table 2</a>. (<b>b</b>) Feature ordering resulted from RFA process for extra-tree regressor model. (<b>c</b>) Feature subgroup combinations listed in <a href="#remotesensing-13-01224-t0A2" class="html-table">Table A2</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original Data
2.2. Data Preprocessing
Splitting of Dataset and Evaluation Metrics
2.3. Baseline Model and Base-Temperature Optimization
2.3.1. Feature Engineering
3. Results
3.1. Temperature Accuracy
3.2. Feature Engineering
3.2.1. Hierarchical Clustering
3.2.2. Recursive Feature Elimination and Addition
3.2.3. Subgroup Comparison: RMSE-Based Weight Importance
3.3. Model Comparison
Extra-Tree Regressor Feature Set and Hyperparameter Tuning
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GDD | Growing degree days |
NDVI | Normalized difference vegetation index |
EVI | Enhanced vegetation index |
RMSE | Root-mean-square deviation |
GEE | Google Earth Engine |
Appendix A
Numeric | rmse | Feature List |
---|---|---|
Label | Mean | |
0 | 0.6209 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’surface pressure’ |
1 | 0.6214 | ’DOY’, ’slope’, ’sea pressure’, ’lat’ |
2 | 0.6244 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’surface pressure’ |
3 | 0.6253 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’GEEcum0’ |
4 | 0.6272 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitacion’, ’surface pressure’ |
5 | 0.6278 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’surface pressure’ |
6 | 0.6281 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’surface pressure’ |
7 | 0.6281 | ’DOY’, ’sea pressure’, ’lat’, ’surface pressure’ |
8 | 0.6287 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’surface pressure’ |
9 | 0.6292 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’surface pressure’, ’GEEcum0’ |
10 | 0.6295 | ’DOY’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’surface pressure’ |
11 | 0.6296 | ’DOY’, ’seapressure’, ’lat’, ’GEEcum0’ |
12 | 0.6301 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’surface pressure’, ’mean 2 m air temperature’ |
13 | 0.6301 | ’DOY’, ’GEE TMIN’, ’sea pressure’, ’NDVI’, ’lat’, ’GEEcum0’ |
14 | 0.6302 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’mean 2 m air temperature’, ’GEEcum0’ |
15 | 0.6304 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’mean 2 m air temperature’, ’GEEcum0’ |
16 | 0.6306 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’surface pressure’, ’mean 2 m air temperature’ |
17 | 0.6307 | ’DOY’, ’sea pressure’, ’NDVI’, ’lat’, ’surface pressure’ |
18 | 0.6308 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitacion’, ’surface pressure’, ’mean 2 m air temperature’ |
19 | 0.6310 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’mean 2 m air temperature’, ’GEEcum0’ |
20 | 0.6312 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’ |
21 | 0.6312 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’GEEcum0’ |
22 | 0.6315 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’surface pressure’, ’mean 2 m air temperature’, ’GEEcum0’ |
23 | 0.6315 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’surface pressure’, ’mean 2 m air temperature’, ’GEEcum0’ |
24 | 0.6316 | ’DOY’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitacion’, ’surface pressure’ |
Numeric | rmse | Feature List |
---|---|---|
Label | Mean | |
0 | 0.5857 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’ |
1 | 0.5865 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’ |
2 | 0.5877 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’ |
3 | 0.5879 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’ |
4 | 0.5885 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’mean 2 m air temperature’, ’GEEcum0’ |
5 | 0.5887 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’mean 2 m air temperature’, ’GEEcum0’ |
6 | 0.5897 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’ |
7 | 0.5904 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’lat’, ’surface pressure’, ’mean 2 m air temperature’ |
8 | 0.5905 | ’DOY’, ’slope’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’ |
9 | 0.5905 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’mean 2 m air temperature’, ’GEEcum0’ |
10 | 0.5908 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’cum precipitation’, ’surface pressure’, ’GEEcum0’ |
11 | 0.5911 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’GEEcum0’ |
12 | 0.5911 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’GEEcum0’ |
13 | 0.5915 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’cum precipitation’, ’mean 2 m air temperature’, ’GEEcum0’ |
14 | 0.5916 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’cum precipitation’, ’GEEcum0’ |
15 | 0.5916 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’, ’GEEcum0’ |
16 | 0.5917 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’cum precipitation’, ’GEEcum0’ |
17 | 0.5919 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’, ’GEEcum0’ |
18 | 0.5924 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’GEEcum0’ |
19 | 0.5924 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’ |
20 | 0.5926 | ’DOY’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’, ’GEEcum0’ |
21 | 0.5927 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’lat’, ’mean 2 m air temperature’, ’GEEcum0’ |
22 | 0.5927 | ’DOY’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’ |
23 | 0.5931 | ’DOY’, ’EVI’, ’slope’, ’GEE TMIN’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’GEEcum0’ |
24 | 0.5931 | ’DOY’, ’EVI’, ’slope’, ’sea pressure’, ’NDVI’, ’lat’, ’cum precipitation’, ’surface pressure’, ’mean 2 m air temperature’ |
References
- Gauzere, J.; Lucas, C.; Ronce, O.; Davi, H.; Chuine, I. Sensitivity analysis of tree phenology models reveals increasing sensitivity of their predictions to winter chilling temperature and photoperiod with warming climate. Ecol. Model. 2019, 411, 108805. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Zhu, W.; Atzberger, C.; Liu, Q. The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote Sens. 2019, 11, 2725. [Google Scholar] [CrossRef] [Green Version]
- Snyder, K.A.; Huntington, J.L.; Wehan, B.L.; Morton, C.G.; Stringham, T.K. Comparison of landsat and land-based phenology camera normalized difference vegetation index (NDVI) for dominant plant communities in the great basin. Sensors 2019, 19, 1139. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Amraoui, M.; Malheiro, A.C.; Moutinho-Pereira, J.; Eiras-Dias, J.; Silvestre, J.; Santos, J.A. Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. Eur. J. Remote Sens. 2014, 47, 753–771. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Liu, Q.; Zhong, B.; Wu, S.; Xia, C. Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors 2017, 17, 1982. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mozo, H.; Orlandi, F.; Galan, C.; Fornaciari, M.; Romano, B.; Ruiz, L.; de la Guardia, C.D.; Trigo, M.; Chuine, I. Olive flowering phenology variation between different cultivars in Spain and Italy: Modeling analysis. Theor. Appl. Climatol. 2009, 95, 385. [Google Scholar] [CrossRef]
- Osborne, C.; Chuine, I.; Viner, D.; Woodward, F. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ. 2000, 23, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Tychon, B.; Benabdelouahab, T. The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [Google Scholar] [CrossRef]
- Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens. 2017, 9, 485. [Google Scholar] [CrossRef] [Green Version]
- Testa, S.; Soudani, K.; Boschetti, L.; Mondino, E.B. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Chang, Q.; Xiao, X.; Jiao, W.; Wu, X.; Doughty, R.; Wang, J.; Du, L.; Zou, Z.; Qin, Y. Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence. Agric. For. Meteorol. 2019, 275, 305–316. [Google Scholar] [CrossRef]
- Yun, K.; Hsiao, J.; Jung, M.P.; Choi, I.T.; Glenn, D.M.; Shim, K.M.; Kim, S.H. Can a multi-model ensemble improve phenology predictions for climate change studies? Ecol. Model. 2017, 362, 54–64. [Google Scholar] [CrossRef]
- Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 2016, 217, 10–21. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Dhiab, A.B.; Galán, C.; Msallem, M.; Romano, B.; Abichou, M.; Dominguez-Vilches, E.; Fornaciari, M. Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle. Clim. Chang. 2013, 116, 263–284. [Google Scholar] [CrossRef]
- Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. Modelling olive trees and grapevines in a changing climate. Environ. Model. Softw. 2015, 72, 387–401. [Google Scholar] [CrossRef]
- Lee, M.A.; Monteiro, A.; Barclay, A.; Marcar, J.; Miteva-Neagu, M.; Parker, J. A framework for predicting soft-fruit yields and phenology using embedded, networked microsensors, coupled weather models and machine-learning techniques. Comput. Electron. Agric. 2020, 168, 105103. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 2007, 109, 261–273. [Google Scholar] [CrossRef]
- Peng, D.; Wu, C.; Li, C.; Zhang, X.; Liu, Z.; Ye, H.; Luo, S.; Liu, X.; Hu, Y.; Fang, B. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecol. Indic. 2017, 77, 323–336. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A.; et al. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Almeida, J.; dos Santos, J.A.; Alberton, B.; Torres, R.D.S.; Morellato, L.P.C. Applying machine learning based on multiscale classifiers to detect remote phenology patterns in cerrado savanna trees. Ecol. Inform. 2014, 23, 49–61. [Google Scholar] [CrossRef]
- Van de Pol, M.; Bailey, L.D.; McLean, N.; Rijsdijk, L.; Lawson, C.R.; Brouwer, L. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 2016, 7, 1246–1257. [Google Scholar]
- Holloway, P.; Kudenko, D.; Bell, J.R. Dynamic selection of environmental variables to improve the prediction of aphid phenology: A machine learning approach. Ecol. Indic. 2018, 88, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.P.; Macaluso, L.; Marino, G.; Caruso, T. Predicting Olive Flowering Phenology with Phenoclimatic Models. Acta Hortic. 2018, 88, 189–194. [Google Scholar] [CrossRef]
- Alcala, A.; Barranco, D. Prediction of Flowering Time in Olive for the Cordoba Olive Collection. HortScience 1992, 27, 1205–1207. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, F.; Ruiz-Valenzuela, L. A new aerobiological indicator to optimize the prediction of the olive crop yield in intensive farming areas of southern Spain. Agric. For. Meteorol. 2019, 271, 207–213. [Google Scholar] [CrossRef]
- Mancuso, S.; Pasquali, G.; Fiorino, P. Phenology modelling and forecasting in olive (Olea europaea L.) using artificial neural networks. Adv. Hort. Sci. 2002, 16, 155–164. [Google Scholar]
- Avolio, E.; Pasqualoni, L.; Federico, S.; Fornaciari, M.; Bonofiglio, T.; Orlandi, F.; Bellecci, C.; Romano, B. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy. Int. J. Biometeorol. 2008, 52, 787. [Google Scholar] [CrossRef]
- Bonofiglio, T.; Orlandi, F.; Sgromo, C.; Romano, B.; Fornaciari, M. Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. N. Z. J. Crop Hortic. Sci. 2008, 36, 59–69. [Google Scholar] [CrossRef]
- García-Mozo, H.; Galán, C.; Vázquez, L. The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia 2006, 22, 95. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.R. Study of the floral phenology of Olea europaea L. in Jaen province (SE Spain) and its relation with pollen emission. Aerobiologia 2009, 25, 217. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Lopes, J.I.; Correia, C.M. Physiological responses of different olive genotypes to drought conditions. Acta Physiol. Plant. 2009, 31, 611–621. [Google Scholar] [CrossRef]
- Dias, A.B.; Peça, J.; Pinheiro, A. Long-term evaluation of the influence of mechanical pruning on olive growing. Agron. J. 2012, 104, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Guidotti, D.; Ricciolini, M.; Sebastiani, L. Un esempio di supporto on line alle decisioni per gli olivicoltori | Archivio della ricerca della Scuola Superiore Sant’Anna. L’Informatore Agrario 2012, 4, 60–63. [Google Scholar]
- Oses, N.; Azpiroz, I.; Quartulli, M.; Olaizola, I.; Marchi, S.; Guidotti, D. Machine Learning for olive phenology prediction and base temperature optimisation. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1–6. [Google Scholar]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 2013, 34, 483–519. [Google Scholar] [CrossRef]
- Murray, A.B. Reducing model complexity for explanation and prediction. Geomorphology 2007, 90, 178–191. [Google Scholar] [CrossRef]
- Gerretzen, J.; Szymańska, E.; Bart, J.; Davies, A.N.; van Manen, H.J.; van den Heuvel, E.R.; Jansen, J.J.; Buydens, L.M. Boosting model performance and interpretation by entangling preprocessing selection and variable selection. Anal. Chim. Acta 2016, 938, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Running, S.W. Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob. Chang. Biol. 2004, 10, 303–308. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Oses, N.; Azpiroz, I.; Marchi, S.; Guidotti, D.; Quartulli, M.; Olaizola, G.I. Analysis of Copernicus’ ERA5 Climate Reanalysis Data as a Replacement for Weather Station Temperature Measurements in Machine Learning Models for Olive Phenology Phase Prediction. Sensors 2020, 20, 6381. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Allen, J.C. A modified sine wave method for calculating degree days. Environ. Entomol. 1976, 5, 388–396. [Google Scholar] [CrossRef]
- Mishra, G.; Sehgal, D.; Valadi, J.K. Quantitative structure activity relationship study of the anti-hepatitis peptides employing random forests and extra-trees regressors. Bioinformation 2017, 13, 60. [Google Scholar] [CrossRef] [Green Version]
- Chaney, N.W.; Herman, J.D.; Ek, M.B.; Wood, E.F. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning. J. Geophys. Res. Atmos. 2016, 121, 13–218. [Google Scholar] [CrossRef]
- Góraj, M.; Wróblewski, C.; Ciężkowski, W.; Jóźwiak, J.; Chormański, J. Free water table area monitoring on wetlands using satellite and UAV orthophotomaps-Kampinos National Park case study. Meteorol. Hydrol. Water Manag. Res. Oper. Appl. 2019, 7. [Google Scholar] [CrossRef]
- Hill, M.; Connolly, P.; Reutemann, P.; Fletcher, D. The use of data mining to assist crop protection decisions on kiwifruit in New Zealand. Comput. Electron. Agric. 2014, 108, 250–257. [Google Scholar] [CrossRef]
- Weiss, L.L. Sequences of wet or dry days described by a Markov chain probability model. Mon. Weather Rev. 1964, 92, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Khiatani, D.; Ghose, U. Weather forecasting using hidden Markov model. In Proceedings of the 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), Gurgaon, India, 12–14 October 2017; pp. 220–225. [Google Scholar]
- Hashemi, F.; Decker, W. Using climatic information and weather forecast for decisions in economizing irrigation water. Agric. Meteorol. 1969, 6, 245–257. [Google Scholar] [CrossRef]
- Kuswanto, H.; Sari, M.R. Bayesian model averaging with Markov chain monte Carlo for calibrating temperature forecast from combination of time series models. J. Math. Stat. 2013, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Carpinone, A.; Langella, R.; Testa, A.; Giorgio, M. Very short-term probabilistic wind power forecasting based on Markov chain models. In Proceedings of the 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14–17 June 2010; pp. 107–112. [Google Scholar]
Abbreviated | Feature Description | Predictor | Data | Data |
---|---|---|---|---|
Feature Name | Type | Source | Resolution | |
DOY | Day of year | Time | ||
Mean 2 m air temperature | Average air temperature at 2 m height (daily average) | Meteo | ERA 5 | 27–28 km |
GEE TMIN (Minimal air temp.) | Minimal air temperature at 2 m height (daily minimum) | Meteo | ERA 5 | 27–28 km |
GEE TMAX (Maximal air temp.) | Maximal air temperature at 2 m height (daily maximum) | Meteo | ERA 5 | 27–28 km |
Dewpoint 2 m temperature | Dewpoint temperature at 2 m height (daily average) | Meteo | ERA 5 | 27–28 km |
Total precipitation | Total precipitation (daily sums) | Meteo | ERA 5 | 27–28 km |
Surface pressure | Surface pressure (daily average) | Meteo | ERA 5 | 27–28 km |
Mean sea-level pressure (sea pressure) | Mean sea-level pressure (daily average) | Meteo | ERA 5 | 27–28 km |
u component of wind 10 m | Horizontal speed of air moving towards the east, | |||
at a height of 10 metres above the surface of Earth. | Meteo | ERA 5 | 27–28 km | |
v component of wind 10 m | Horizontal speed of air moving towards the north. | Meteo | ERA 5 | 27–28 km |
EVI | Enhanced vegetation index (EVI) generated from the | |||
Near-IR, red, and blue bands of each scene. | MODIS | MOD09GA 006 EVI | 1 km | |
NDVI | Normalized difference vegetation index generated | |||
from the near-IR and red bands of each scene. | MODIS | MOD09GA 006 NDVI | 1 km | |
RED (sur refl b01) | Red surface reflectance | MODIS | 006 MOD09GQ | 0.25 km |
NIR (sur refl b02) | NIR surface reflectance | MODIS | 006 MOD09GQ | 0.25 km |
sur refl b03 | Blue surface reflectance, 16 day frequency | MODIS | 006 MOD13Q1 | 0.25 km |
sur refl b07 | MIR surface reflectance, 16 day frequency | MODIS | 006 MOD13Q1 | 0.25 km |
ViewZenith | View zenith angle, 16 day frequency | MODIS | 006 MOD13Q1 | 0.25 km |
SolarZenith | Solar zenith angle, 16 day frequency | MODIS | 006 MOD13Q1 | 0.25 km |
RelativeAzimuth | Relative azimuth angle, 16 day frequency | MODIS | 006 MOD13Q1 | 0.25 km |
Lat | Latitude | Spatial | ||
Lon | Longitude | Spatial | ||
Slope | Landform classes created by combining the ALOS CHILI | |||
and ALOS mTPI datasets. | Spatial | ALOS Landform | ||
Created features | ||||
GEEcumt | Growing degree day from GEE temperature measurements; t is base temperature used. | |||
Cum precipitation | Precipitation accumulated from the first of January until DOY. | |||
EVIcum | EVI accumulated from the first of January until DOY. | |||
NDVIcum | NDVI accumulated from 1 January until DOY. | |||
REDcum | RED accumulated from 1 January until DOY. | |||
NIRcum | NIR accumulated from 1 January until DOY. |
Feature | Weight Percentage | Feature | Weight Percentage | Feature | Weight Percentage |
---|---|---|---|---|---|
EVI | 1.00 | Mean 2 m air temp. | 0.40 | v comp. of wind | 0.35 |
slope | 0.97 | GEEcum0 | 0.40 | lon | 0.34 |
GEE TMIN | 0.77 | EVIcum | 0.38 | GEE TMAX | 0.33 |
Sea level | 0.69 | sur refl b03 | 0.36 | NIR | 0.33 |
NDVI | 0.68 | dewpoint 2 m temp. | 0.36 | ViewZenith | 0.33 |
lat | 0.66 | REDcum | 0.36 | RED | 0.33 |
Cum precipitacion | 0.55 | NIRcum | 0.35 | SolarZenith | 0.32 |
NDVIcum | 0.48 | u comp. of wind | 0.35 | Total precipitation | 0.32 |
Surface pressure | 0.43 | sur refl b07 | 0.35 | RelativeAzimuth | 0.30 |
Number of Features | 14 | 16 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | mean | min | 25% | 50% | 75% | max | mean | min | 25% | 50% | 75% | max |
ExtraTreesRegressor | 0.600 | 0.555 | 0.581 | 0.613 | 0.620 | 0.627 | 0.589 | 0.532 | 0.576 | 0.600 | 0.610 | 0.636 |
RandomForestRegressor | 0.635 | 0.583 | 0.618 | 0.642 | 0.650 | 0.670 | 0.632 | 0.575 | 0.612 | 0.635 | 0.662 | 0.677 |
RandomForestClassifier | 0.779 | 0.677 | 0.732 | 0.782 | 0.828 | 0.872 | 0.787 | 0.661 | 0.755 | 0.782 | 0.816 | 0.901 |
ExtraTreesClassifier | 0.793 | 0.745 | 0.757 | 0.783 | 0.825 | 0.870 | 0.757 | 0.664 | 0.723 | 0.753 | 0.803 | 0.844 |
KNeighborsRegressor | 0.831 | 0.769 | 0.789 | 0.827 | 0.845 | 0.947 | 1.799 | 1.692 | 1.769 | 1.810 | 1.842 | 1.873 |
DecisionTreeClassifier | 0.941 | 0.812 | 0.898 | 0.936 | 0.961 | 1.107 | 0.949 | 0.795 | 0.914 | 0.932 | 1.004 | 1.102 |
GradientBoostingClassifier | 1.001 | 0.892 | 0.895 | 0.942 | 1.119 | 1.208 | 0.967 | 0.860 | 0.931 | 0.980 | 0.998 | 1.077 |
Agricolus | 1.190 | 1.135 | 1.173 | 1.188 | 1.205 | 1.250 | 1.190 | 1.135 | 1.173 | 1.188 | 1.205 | 1.250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azpiroz, I.; Oses, N.; Quartulli, M.; Olaizola, I.G.; Guidotti, D.; Marchi, S. Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods. Remote Sens. 2021, 13, 1224. https://doi.org/10.3390/rs13061224
Azpiroz I, Oses N, Quartulli M, Olaizola IG, Guidotti D, Marchi S. Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods. Remote Sensing. 2021; 13(6):1224. https://doi.org/10.3390/rs13061224
Chicago/Turabian StyleAzpiroz, Izar, Noelia Oses, Marco Quartulli, Igor G. Olaizola, Diego Guidotti, and Susanna Marchi. 2021. "Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods" Remote Sensing 13, no. 6: 1224. https://doi.org/10.3390/rs13061224
APA StyleAzpiroz, I., Oses, N., Quartulli, M., Olaizola, I. G., Guidotti, D., & Marchi, S. (2021). Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods. Remote Sensing, 13(6), 1224. https://doi.org/10.3390/rs13061224