Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals
"> Figure 1
<p>Overview of the geometry of an RO event.</p> "> Figure 2
<p>Occultation event from UTC 0003 2012-09-11, <math display="inline"><semantics> <mrow> <mn>20.16</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>114.93</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. By applying e.g., Hanning windows of various lengths we can observe how the mapped coordinates are arranged. Smeared features along the frequency axis (left) or along the time axis (right) are instead smeared along the band around the range model, or along the range model itself. The center panel shows an appropriate window length for this occultation.</p> "> Figure 3
<p>Occultation event from UTC 0003 2012-09-11, <math display="inline"><semantics> <mrow> <mn>20.16</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>114.93</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. Spectrogram produced by STFT, where values ≤−50 dB are set to <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>50</mn> </mrow> </semantics></math> dB. Left shows the spectrogram in time-frequency coordinates, right shows the spectrogram after mapping to BA and IH.</p> "> Figure 4
<p>Occultation event from UTC 0003 2012-09-11, <math display="inline"><semantics> <mrow> <mn>20.16</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>114.93</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. The dashed black lines show the various cross sections where we compare the amplitudes between STFT and SWPM.</p> "> Figure 5
<p>Five horizontal cross sections of STFT (solid blue) and SWPM (dashed red) applied to the same measurement.</p> "> Figure 6
<p>Five vertical cross sections of STFT (solid blue) and SWPM (dashed red) applied to the same measurement.</p> "> Figure 7
<p>Occultation event from UTC 0003 2012-09-11, <math display="inline"><semantics> <mrow> <mn>20.16</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>114.93</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. An illustration of the effects of different window lengths. With shorter windows, uncertainty in IH grows (left). Longer windows cause more uncertainty in BA (right).</p> "> Figure 8
<p>A MetOp-A occultation from UTC 0020 2015-02-10, <math display="inline"><semantics> <mrow> <mn>53.90</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>3.86</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. Left shows SWPM, right shows STFT. ECMWF BA is shown in solid black, standard PM is shown in dashed black. The window length for STFT is <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math> s.</p> "> Figure 9
<p>A MetOp-A occultation from UTC 0104 2015-02-10, <math display="inline"><semantics> <mrow> <mn>73.97</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>N, <math display="inline"><semantics> <mrow> <mn>143.19</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>W. Left shows SWPM, right shows STFT. ECMWF BA is shown in solid black, standard PM is shown in dashed black. The window length for STFT is <math display="inline"><semantics> <mrow> <mn>1.5</mn> </mrow> </semantics></math> s.</p> "> Figure 10
<p>A MetOp-A occultation from UTC 0319 2015-02-10, <math display="inline"><semantics> <mrow> <mn>28.61</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>S, <math display="inline"><semantics> <mrow> <mn>71.14</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. Left shows SWPM, right shows STFT. ECMWF BA is shown in solid black, standard PM is shown in dashed black. The window length for STFT is <math display="inline"><semantics> <mrow> <mn>1.9</mn> </mrow> </semantics></math> s.</p> "> Figure 11
<p>A MetOp-A occultation from UTC 0226 2015-02-10, <math display="inline"><semantics> <mrow> <mn>21.98</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>N, <math display="inline"><semantics> <mrow> <mn>65.44</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>W. Left shows SWPM, right shows STFT. ECMWF BA is shown in solid black, standard PM is shown in dashed black. The window length for STFT is <math display="inline"><semantics> <mrow> <mn>2.0</mn> </mrow> </semantics></math> s.</p> "> Figure 12
<p>A MetOp-A occultation from UTC 0623 2015-02-10, <math display="inline"><semantics> <mrow> <mn>22.28</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>N, <math display="inline"><semantics> <mrow> <mn>73.64</mn> <msup> <mrow/> <mo>∘</mo> </msup> </mrow> </semantics></math>E. Left shows SWPM, right shows STFT. ECMWF BA is shown in solid black, standard PM is shown in dashed black. The window length for STFT is <math display="inline"><semantics> <mrow> <mn>2.0</mn> </mrow> </semantics></math> s.</p> ">
Abstract
:1. Introduction
2. Short-Time Fourier Transform
3. Sliding Window Phase Matching
3.1. Connection with STFT
3.2. Resolution
3.2.1. Resolution in Impact Parameter
3.2.2. Resolution in Bending Angle
3.2.3. Consequences for SWPM
4. Application of SWPM on Real RO Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hein, G.W. Status, perspectives and trends of satellite navigation. Sat. Nav. 2020, 1, 22. [Google Scholar] [CrossRef]
- Kursinski, E.; Hajj, G.; Schofield, J.; Linfield, R.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Fjeldbo, G.; Kliore, A.J.; Eshleman, V.R. The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J. 1971, 76, 123. [Google Scholar] [CrossRef]
- Pavelyev, A. On the possibility of radio holographic investigation on communication link satellite-to-satellite. Radiotekhn. Elektron. 1998, 43, 939–944. [Google Scholar]
- Igarashi, K.; Pavelyev, A.; Hocke, K.; Pavelyev, D.; Kucherjavenkov, I.; Matyugov, S.; Zakharov, A.; Yakovlev, O. Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space 2000, 52, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.V. Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci. 2001, 36, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, M. Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Gorbunov, M.E. Radioholographic analysis of radio occultation data in multipath zones. Radio Sci. 2002, 37. [Google Scholar] [CrossRef] [Green Version]
- Beyerle, G.; Hocke, K.; Wickert, J.; Schmidt, T.; Marquardt, C.; Reigber, C. GPS radio occultations with CHAMP: A radio holographic analysis of GPS signal propagation in the troposphere and surface reflections. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Reigber, C.; Beyerle, G.; König, R.; Marquardt, C.; Schmidt, T.; Grunwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.G.; et al. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 2001, 28, 3263–3266. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Oliveras, S.; Rius, A. GNSS signal interference classified by means of a supervised learning method applied in the time-frequency domain. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar]
- Cardellach, E.; Oliveras, S. Assessment of a Potential Reflection Flag Product. ROM SAF Report 23, Radio Occultation Meteorology Satellite Application Facility. 2016. Available online: https://www.romsaf.org/general-documents/rsr/rsr_23.pdf (accessed on 24 February 2021).
- Hu, A.; Wu, S.; Wang, X.; Wang, Y.; Norman, R.; He, C.; Cai, H.; Zhang, K. Improvement of reflection detection success rate of GNSS RO measurements using artificial neural network. IEEE Trans. Geosci. Remote Sens. 2017, 56, 760–769. [Google Scholar] [CrossRef]
- Aparicio, J.M.; Cardellach, E.; Rodríguez, H. Information content in reflected signals during GPS Radio Occultation observations. Atmos. Meas. Tech. 2018, 11, 1883–1900. [Google Scholar] [CrossRef] [Green Version]
- Sievert, T.; Rasch, J.; Carlström, A.; Pettersson, M.I. Analysis of reflections in GNSS radio occultation measurements using the phase matching amplitude. Atmos. Meas. Tech. 2018, 11, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Bonnedal, M.; Christensen, J.; Carlström, A.; Berg, A. Metop-GRAS in-orbit instrument performance. GPS Solut. 2010, 14, 109. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Schreiner, W.; Zeng, Z.; Hunt, D.; Lin, Y.C.; Kuo, Y.H. Observation, analysis, and modeling of deep radio occultation signals: Effects of tropospheric ducts and interfering signals. Radio Sci. 2014, 49, 954–970. [Google Scholar] [CrossRef]
- Gorbunov, M.; Lauritsen, K.; Rhodin, A.; Tomassini, M.; Kornblueh, L. Radio holographic filtering, error estimation, and quality control of radio occultation data. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Kuo, Y.H.; Sokolovskiy, S.; Zou, X.; Zeng, Z.; Hsiao, L.F.; Ruston, B.C. A quality control procedure based on bending angle measurement uncertainty for radio occultation data assimilation in the tropical lower troposphere. J. Atmos. Ocean. Technol. 2018, 35, 2117–2131. [Google Scholar] [CrossRef]
- Gorbunov, M.; Lauritsen, K.; Leroy, S. Application of Wigner distribution function for analysis of radio occultations. Radio Sci. 2010, 45. [Google Scholar] [CrossRef]
- Gorbunov, M.; Lauritsen, K.; Leroy, S. Analysis of RO data retrieved from the Wigner distribution function. Presented at the 2nd Workshop, International Radio Occultation Working Group (IROWG), Estes Park, CO, USA, 28 March–3 April 2012. [Google Scholar]
- Gorbunov, M.; Obukhov, O.; Kirchengast, G. Kirkwood Distribution Function and its Application for the Analysis of Radio Occultation Observations. Presented at the 7th Workshop, International Radio Occultation Working Group (IROWG), Elsinore, Denmark, 19–25 September 2019. [Google Scholar]
- Gorbunov, M.E.; Kornblueh, L. Analysis and validation of GPS/MET radio occultation data. J. Geophys. Res. Atmos. 2001, 106, 17161–17169. [Google Scholar] [CrossRef]
- Jensen, A.S.; Lohmann, M.S.; Nielsen, A.S.; Benzon, H.H. Geometrical optics phase matching of radio occultation signals. Radio Sci. 2004, 39. [Google Scholar] [CrossRef] [Green Version]
- Sokolovskiy, S.; Rocken, C.; Hunt, D.; Schreiner, W.; Johnson, J.; Masters, D.; Esterhuizen, S. GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals. Geophys. Res. Lett. 2006, 33, 14. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.S.; Lohmann, M.S.; Benzon, H.H.; Nielsen, A.S. Full spectrum inversion of radio occultation signals. Radio Sci. 2003, 38. [Google Scholar] [CrossRef]
- Gorbunov, M. Canonical transform method for processing radio occultation data in the lower troposphere. Radio Sci. 2002, 37. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Lauritsen, K.B. Canonical Transform Methods for Radio Occultation Data; Scientific Report 02-10; Danish Meteorological Institute: Copenhagen, Denmark, 2002; Available online: https://www.romsaf.org/Publications/reports/sr02-10.pdf (accessed on 24 February 2021).
- Gorbunov, M.; Lauritsen, K. Analysis of wave fields by Fourier integral operators and their application for radio occultations. Radio Sci. 2004, 39. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Gurvich, A.S.; Kornblueh, L. Comparative analysis of radioholographic methods of processing radio occultation data. Radio Sci. 2000, 35, 1025–1034. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sievert, T.; Rasch, J.; Carlström, A.; Ludwig Barbosa, V.; Pettersson, M.I.; Vu, V. Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals. Remote Sens. 2021, 13, 970. https://doi.org/10.3390/rs13050970
Sievert T, Rasch J, Carlström A, Ludwig Barbosa V, Pettersson MI, Vu V. Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals. Remote Sensing. 2021; 13(5):970. https://doi.org/10.3390/rs13050970
Chicago/Turabian StyleSievert, Thomas, Joel Rasch, Anders Carlström, Vinícius Ludwig Barbosa, Mats I. Pettersson, and Viet Vu. 2021. "Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals" Remote Sensing 13, no. 5: 970. https://doi.org/10.3390/rs13050970
APA StyleSievert, T., Rasch, J., Carlström, A., Ludwig Barbosa, V., Pettersson, M. I., & Vu, V. (2021). Using A Sliding Window Phase Matching Method for Imaging of GNSS Radio Occultation Signals. Remote Sensing, 13(5), 970. https://doi.org/10.3390/rs13050970