Optimising the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models
<p>Time-zero is positioned on the first peak of the direct wave (green line). The two way travel time is calculated from the time-zero position to the average time of the three peaks (Perfect Electric Conductor (PEC) target response—red lines).</p> "> Figure 2
<p>Heterogeneous concrete model is plotted using Paraview [<a href="#B68-remotesensing-13-00723" class="html-bibr">68</a>]. The model employs a 1.5 GHz centre frequency GSSI-like antenna structure on top of the concrete. A PEC plate is placed below the concrete model in order to obtain a perfect reflection. The geometry dimension of the models is 30 cm × 20 cm × 36 cm. (<b>a</b>) 3D view of the concrete model. (<b>b</b>) A slice of the 3D model which allows for a better understanding of the material distribution.</p> "> Figure 3
<p>A random concrete model is simulated a number of times (×50) with different particle distributions in order to find its average bulk permittivity based on the reflection from the PEC reflector. This process neglects abnormal permittivity and allows the output to be more precise.</p> "> Figure 4
<p>Heterogeneous concrete mix with different aggregates, air-voids and moisture content. (<b>a</b>) presents the same mixture content as (<b>b</b>) but with different distribution. (<b>b</b>) shows a mixture with low aggregate content. (<b>c</b>) illustrates high moisture content concrete resulting in a high permittivity. Finally, (<b>d</b>) indicates high air-void content allowing the GPR signal to travel with a higher velocity. 64 representative concrete mixtures were selected from the training pool and each one was simulated 50 times resulting in 3200 simulations. The red box corresponds to the numerical equivalent of the GSSI 1.5 GHz antenna structure. The volumetric percentages of the components for each model are shown in <a href="#remotesensing-13-00723-t002" class="html-table">Table 2</a>.</p> "> Figure 5
<p>The error betweenthe estimated permittivity using Finite-Difference Time-Domain (FDTD) and Complex Refractive Index Model (CRIM) models (<b>a</b>). Sub-figure (<b>b</b>), zooms in to better visualise the resulting shape factor.</p> "> Figure 6
<p>Comparison between different mixing models and the new modified CRIM model. The actual relative permittivity is based on the FDTD algorithm and the predicted relative permittivity is from the mixing models.</p> "> Figure 7
<p>The experimental framework used to validate the revised shape factor. A horn antenna with 1 GHz central frequency is placed on top of a surface consisted of concrete blocks. The gaps between the concrete blocks are gradually increased in an effort to increase the overall volumetric fraction of air.</p> "> Figure 8
<p>The measured and the calculated bulk permittivity using <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.13</mn> </mrow> </semantics></math>. It is apparent that the revised shape factor <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.13</mn> </mrow> </semantics></math> over-performs the default <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Time-zero
2.2. Concrete Modelling
2.3. Optimisation and Comparison
= | geometric parameter | |
= | relative bulk permittivity | |
= | aggregate volume | |
= | cement volume | |
= | air-void volume | |
= | water volume | |
= | relative permittivity of aggregate (solid phase–matrix) | |
= | relative permittivity of cement (solid phase–matrix) | |
= | relative permittivity of air-void (gaseous phase–air) | |
= | relative permittivity of water or moisture content (liquid phase–water) |
= | bulk permittivity | |
= | dielectric constant of binder | |
= | dielectric constant of the solid phase (matrix) | |
= | dielectric constant of the gaseous phase (air) | |
= | dielectric constant of the liquid phase (water) | |
= | bulk volume of aggregate | |
= | volume of air | |
= | volume of water |
3. Laboratory Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; The University of Michigan: London, UK, 2005. [Google Scholar]
- Jol, H.M. Ground pEnetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Annan, A. Ground-penetrating radar. In Near-Surface Geophysics; Society of Exploration Geophysicists: Tulsa, Oklahoma, 2005; pp. 357–438. [Google Scholar]
- El-Mahallawy, M.S.; Hashim, M. Material classification of underground utilities from GPR images using DCT-based SVM approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1542–1546. [Google Scholar] [CrossRef]
- Gabryś, M.; Kryszyn, K.; Ortyl, Ł. GPR surveying method as a tool for geodetic verification of GESUT database of utilities in the light of BSI PAS128. Rep. Geod. Geoinform. 2019, 107, 49–59. [Google Scholar]
- Kang, M.S.; Kim, N.; Im, S.B.; Lee, J.J.; An, Y.K. 3D GPR Image-based UcNet for Enhancing Underground Cavity Detectability. Remote Sens. 2019, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Saarenketo, T.; Scullion, T. Road evaluation with ground penetrating radar. J. Appl. Geophys. 2000, 43, 119–138. [Google Scholar] [CrossRef]
- Cardarelli, E.; Marrone, C.; Orlando, L. Evaluation of tunnel stability using integrated geophysical methods. J. Appl. Geophys. 2003, 52, 93–102. [Google Scholar] [CrossRef]
- Hugenschmidt, J. Concrete bridge inspection with a mobile GPR system. Constr. Build. Mater. 2002, 16, 147–154. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Mastrangelo, R. GPR inspection of concrete bridges. Cem. Concr. Compos. 2006, 28, 384–392. [Google Scholar] [CrossRef]
- Diamanti, N.; Annan, A.P.; Redman, J.D. Concrete bridge deck deterioration assessment using ground penetrating radar (GPR). J. Environ. Eng. Geophys. 2017, 22, 121–132. [Google Scholar] [CrossRef]
- Maierhofer, C. Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J. Mater. Civ. Eng. 2003, 15, 287–297. [Google Scholar] [CrossRef]
- Xie, X.; Li, P.; Qin, H.; Liu, L.; Nobes, D.C. GPR identification of voids inside concrete based on the support vector machine algorithm. J. Geophys. Eng. 2013, 10, 034002. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Davidson, N. Realistic modelling of ground penetrating radar for landmine detection using FDTD. In Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 30 June–4 July 2014; pp. 954–959. [Google Scholar]
- Chang, C.W.; Lin, C.H.; Lien, H.S. Measurement radius of reinforcing steel bar in concrete using digital image GPR. Constr. Build. Mater. 2009, 23, 1057–1063. [Google Scholar] [CrossRef]
- Mai, T.C.; Razafindratsima, S.; Sbartaï, Z.M.; Demontoux, F.; Bos, F. Non-destructive evaluation of moisture content of wood material at GPR frequency. Constr. Build. Mater. 2015, 77, 213–217. [Google Scholar] [CrossRef]
- Hoegh, K.; Khazanovich, L.; Dai, S.; Yu, T. Evaluating asphalt concrete air void variation via GPR antenna array data. Case Stud. Nondestr. Test. Eval. 2015, 3, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.Q. Effects of asphalt pavement properties on complex permittivity. Int. J. Pavement Eng. 2002, 3, 217–226. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; García, F.G.; Abad, I.R. GPR evaluation of the damage found in the reinforced concrete base of a block of flats: A case study. NDT e Int. 2008, 41, 341–353. [Google Scholar] [CrossRef]
- Klysz, G.; Balayssac, J.; Ferrières, X. Evaluation of dielectric properties of concrete by a numerical FDTD model of a GPR coupled antenna—parametric study. NDT e Int. 2008, 41, 621–631. [Google Scholar] [CrossRef]
- Tsui, F.; Matthews, S. Analytical modelling of the dielectric properties of concrete for subsurface radar applications. Constr. Build. Mater. 1997, 11, 149–161. [Google Scholar] [CrossRef]
- Bourdi, T.; Rhazi, J.E.; Boone, F.; Ballivy, G. Application of Jonscher model for the characterization of the dielectric permittivity of concrete. J. Phys. D Appl. Phys. 2008, 41, 205410. [Google Scholar] [CrossRef]
- Bourdi, T.; Rhazi, J.E.; Boone, F.; Ballivy, G. Modelling dielectric-constant values of concrete: An aid to shielding effectiveness prediction and ground-penetrating radar wave technique interpretation. J. Phys. D Appl. Phys. 2012, 45, 405401. [Google Scholar] [CrossRef]
- Redman, J.D.; Annan, A.P.; Diamanti, N. Measurement of bulk electrical properties using GPR with a variable reflector. J. Environ. Eng. Geophys. 2018, 23, 489–496. [Google Scholar] [CrossRef]
- Böttcher, C.J.F. Theory Electric Polarisation; Elsevier Publishing Company: Amsterdam, The Netherlands, 1952. [Google Scholar]
- Sihvola, A.H. Electromagnetic Mixing Formulas and Applications; IET Digital Library: Padstow, UK, 1999. [Google Scholar]
- Al-Qadi, I.L.; Leng, Z.; Lahouar, S.; Baek, J. In-place hot-mix asphalt density estimation using ground-penetrating radar. Transp. Res. Rec. 2010, 2152, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Birchak, J.R.; Gardner, C.G.; Hipp, J.E.; Victor, J.M. High dielectric constant microwave probes for sensing soil moisture. Proc. IEEE 1974, 62, 93–98. [Google Scholar] [CrossRef]
- Rayleigh, L. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1892, 34, 481–502. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, C.J.F.; van Belle, O.C.; Bordewijk, P.; Rip, A. Theor. electr. Polarization; Elsevier Science Ltd: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Brown, W.F.; Franz, W.; Forsbergh, P. Dielectrics/Dielektrika. Handbuch der Physik; Springer: Heidelberg, Germany, 1956. [Google Scholar]
- Wagner, A. Physik, 40, 817 (1913). Arch. Elektroteeh 1914, 3, 83. [Google Scholar]
- Bruggeman, V.D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der physik 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.; Giannopoulos, A.; Gray, A.; Giannakis, I.; Patterson, A.; Wetter, L.; Hamrah, A. A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software. Comput. Phys. Commun. 2019, 237, 208–218. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd ed.; Artech House Publishers: London, UK, 2005. [Google Scholar]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Sadiku, M.N. Numerical Techniques in Electromagnetics; CRC press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cassidy, N.J. A review of practical numerical modelling methods for the advanced interpretation of ground-penetrating radar in near-surface environments. Near Sur. Geophys. 2007, 5, 5–21. [Google Scholar] [CrossRef]
- Cassidy, N.J.; Millington, T.M. The application of finite-difference time-domain modelling for the assessment of GPR in magnetically lossy materials. J. Appl. Geophys. 2009, 67, 296–308. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 37–51. [Google Scholar] [CrossRef]
- Lee, K.H.; Chen, C.C.; Teixeira, F.L.; Lee, R. Modeling and investigation of a geometrically complex UWB GPR antenna using FDTD. IEEE Trans. Antennas Propag. 2004, 52, 1983–1991. [Google Scholar] [CrossRef]
- Uduwawala, D. Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD. J. Electomagn. Waves Appl. 2006, 20, 227–236. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. Realistic FDTD GPR antenna models optimized using a novel linear/nonlinear Full-Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1768–1778. [Google Scholar] [CrossRef]
- Bourgeois, J.M.; Smith, G.S. A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Trans. Geosci. Remote Sens. 1996, 34, 36–44. [Google Scholar] [CrossRef]
- Klysz, G.; Balayssac, J.; Laurens, S.; Ferrieres, X. Numerical FDTD simulation of the direct wave propagation of a GPR coupled antenna. In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; pp. 45–48. [Google Scholar]
- Caratelli, D.; Yarovoy, A.; Ligthart, L.P. Accurate FDTD modelling of resistively-loaded bow-tie antennas for GPR applications. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 2115–2118. [Google Scholar]
- Bourgeois, J.; Smith, G. A complete electromagnetic simulation of a ground penetrating radar for mine detection: Theory and experiment. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997, Montreal, QC, Canada, 13–18 July 1997; pp. 986–989. [Google Scholar]
- Radzevicius, S.J.; Chen, C.C.; Peters Jr, L.; Daniels, J.J. Near-field dipole radiation dynamics through FDTD modeling. J. Appl. Geophys. 2003, 52, 75–91. [Google Scholar] [CrossRef]
- Diamanti, N.; Annan, A.P. Characterizing the energy distribution around GPR antennas. J. Appl. Geophys. 2013, 99, 83–90. [Google Scholar] [CrossRef]
- Lampe, B.; Holliger, K. Resistively loaded antennas for ground-penetrating radar: A modeling approach. Geophysics 2005, 70, K23–K32. [Google Scholar] [CrossRef]
- Venkatarayalu, N.V.; Chen, C.C.; Teixeira, F.L.; Lee, R. Numerical modeling of ultrawide-band dielectric horn antennas using FDTD. IEEE Trans. Antennas Propag. 2004, 52, 1318–1323. [Google Scholar] [CrossRef]
- Turk, A.S.; Sahinkaya, D.A.; Sezgin, M.; Nazli, H. Investigation of convenient antenna designs for ultra-wide band GPR systems. In Proceedings of the 2007 4th International Workshop on, Advanced Ground Penetrating Radar, Aula Magna Partenope, Italy, 27–29 June 2007; pp. 192–196. [Google Scholar]
- Warren, C.; Giannopoulos, A. Creating finite-difference time-domain models of commercial ground-penetrating radar antennas using Taguchi’s optimization method. Geophysics 2011, 76, G37–G47. [Google Scholar] [CrossRef]
- Robert, A. Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J. Appl. Geophys. 1998, 40, 89–94. [Google Scholar] [CrossRef]
- Al-Saleh, S.A. Analysis of total chloride content in concrete. Case Stu. Constr. Mater. 2015, 3, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Laurens, S.; Balayssac, J.; Rhazi, J.; Klysz, G.; Arliguie, G. Non-destructive evaluation of concrete moisture by GPR: Experimental study and direct modeling. Mater. Struct. 2005, 38, 827–832. [Google Scholar] [CrossRef]
- Wu, Z.; Wong, H.; Buenfeld, N. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cem. Concr. Res. 2017, 98, 136–154. [Google Scholar] [CrossRef]
- Shaw, M. The permittivity and conductivity of concretes at ground-penetrating radar frequencies. Adv. Cem. Res. 1998, 10, 187–194. [Google Scholar] [CrossRef]
- Soutsos, M.; Bungey, J.; Millard, S.; Shaw, M.; Patterson, A. Dielectric properties of concrete and their influence on radar testing. NDT e Int. 2001, 34, 419–425. [Google Scholar] [CrossRef]
- Terrasse, G.; Nicolas, J.M.; Trouvé, E.; Drouet, É. Automatic localization of gas pipes from GPR imagery. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 2395–2399. [Google Scholar]
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging Int. J. 2006, 7, 90–123. [Google Scholar] [CrossRef]
- Brown, E. Density of asphalt concrete-how much is needed? In Proceedings of the 69th Annual Meeting of the TransportationResearch Board, Washington, DC, USA, 8–9 January 1990.
- Yelf, R. Where is true time zero? In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; pp. 279–282. [Google Scholar]
- Zadhoush, H. Numerical modelling of ground penetrating radar for optimisation of the time-zero adjustment and complex refractive index model. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2020. [Google Scholar]
- Warren, C.; Giannopoulos, A. Investigation of the directivity of a commercial ground-penetrating radar antenna using a finite-difference time-domain antenna model. In Proceedings of the 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 4–8 June 2012; pp. 226–231. [Google Scholar]
- Ahrens, J.; Geveci, B.; Law, C. Paraview: An end-user tool for large data visualization. Vis. Handb. 2005, 717, 8. [Google Scholar]
- Lachowicz, J.; Rucka, M. A concept of heterogeneous numerical model of concrete for GPR simulations. In Proceedings of the 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Edinburgh, UK, 28–30 June 2017; pp. 1–4. [Google Scholar]
- Grassl, P.; Wong, H.S.; Buenfeld, N.R. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cem. Concr. Res. 2010, 40, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.; Rosenau, R. Aggregate stability and size distribution. Methods Soil Anal. Part I Phys. Mineral. Methods 1986, 5, 425–442. [Google Scholar]
- Jury, W.A.; Horton, R. Soil Physics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ukaegbu, I.K.; Gamage, K.A.; Aspinall, M.D. Nonintrusive Depth Estimation of Buried Radioactive Wastes Using Ground Penetrating Radar and a Gamma Ray Detector. Remote Sens. 2019, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Gardner, C.; Dean, T.; Cooper, J. Soil water content measurement with a high-frequency capacitance sensor. J. Agric. Eng. Res. 1998, 71, 395–403. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
Material | Mixture Percentage | Permittivity () |
---|---|---|
Aggregate | 60–75% | 7 |
Cement | 7–15% | 3 |
Air | 1–8% | 1 |
Water | 14–21% | 37.54 [69] |
Model | Aggregate | Cement | Air-Voids | Moisture Content |
---|---|---|---|---|
a | 65% | 15% | 5% | 15% |
b | 45% | 27% | 11% | 17% |
c | 60% | 14% | 5% | 21% |
d | 65% | 10% | 15% | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadhoush, H.; Giannopoulos, A.; Giannakis, I. Optimising the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models. Remote Sens. 2021, 13, 723. https://doi.org/10.3390/rs13040723
Zadhoush H, Giannopoulos A, Giannakis I. Optimising the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models. Remote Sensing. 2021; 13(4):723. https://doi.org/10.3390/rs13040723
Chicago/Turabian StyleZadhoush, Hossain, Antonios Giannopoulos, and Iraklis Giannakis. 2021. "Optimising the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models" Remote Sensing 13, no. 4: 723. https://doi.org/10.3390/rs13040723
APA StyleZadhoush, H., Giannopoulos, A., & Giannakis, I. (2021). Optimising the Complex Refractive Index Model for Estimating the Permittivity of Heterogeneous Concrete Models. Remote Sensing, 13(4), 723. https://doi.org/10.3390/rs13040723