Improving Soil Moisture Estimation by Identification of NDVI Thresholds Optimization: An Application to the Chinese Loess Plateau
<p>Study area: (<b>a</b>) Location of the Chinese Loess Plateau (CLP) in China; (<b>b</b>) spatial distribution of 213 automatic soil moisture observation stations used in the study. The background image shows the MODIS (MCD12Q1 Type2—the University of Maryland (UMD) land cover classification scheme) land cover product over the CLP. There are 16 different land cover types in the UMD land cover classification scheme and only 15 land cover types except the land cover of evergreen broadleaf forest over the CLP.</p> "> Figure 2
<p>Flowchart of relative soil moisture (RSM) estimation by the apparent thermal inertia (ATI)-based models, the ATI/TVDI—temperature vegetation dryness index joint models, and the TVDI-based models with Criterion 2 (adapted from [<a href="#B35-remotesensing-13-00589" class="html-bibr">35</a>]). NDVI<sub>0</sub> was used for computing TVDI, and both NDVI<sub>ATI</sub> and NDVI<sub>TVDI</sub> were applied for dividing the entire Chinese Loess Plateau (CLP). The three subregions, namely the ATI subregion (NDVI ≤ NDVI<sub>ATI</sub>), the ATI/TVDI subregion (NDVI<sub>ATI</sub> < NDVI ≤ NDVI<sub>TVDI</sub>), and the TVDI subregion (NDVI > NDVI<sub>TVDI</sub>), were assigned by calculated ATI, the average of ATI and TVDI, and TVDI, respectively.</p> "> Figure 3
<p>The NDVI-LST triangle space defining the dry/wet edges on DOY—day of the year 113 over the CLP (adapted from [<a href="#B35-remotesensing-13-00589" class="html-bibr">35</a>,<a href="#B48-remotesensing-13-00589" class="html-bibr">48</a>,<a href="#B51-remotesensing-13-00589" class="html-bibr">51</a>]). Theoretically, in the triangular figure (pink region area), the base edge of the triangle with maximum evapotranspiration pixels, and the top edge of the triangle with zero evapotranspiration pixels are displayed. As the NDVI increases, the maximum LST decreases and can be fitted to a negative slope using the least square method, which is defined as the dry edge in red color lines (LST<sub>max</sub>). The base line of the triangle represents the wet edge in blue color lines (LST<sub>min</sub>), which is calculated by averaging a group of points in the lower limits of the scatterplot. The TVDI increases from 0 to 1 (a black arrow going from TVDI = 0 to TVDI = 1), indicating a land surface change from extreme wetness to extreme drought. Linear equations were generated when NDVI<sub>0</sub> equals 0, 0.1, and 0.2, respectively. The linear regression coefficients (slopes, intercepts, and R<sup>2</sup>) of dry/wet edges varied with different NDVI<sub>0</sub>.</p> "> Figure 4
<p>Schematic diagram of the calibration and validation processes with Criterion 1 (NDVI<sub>0</sub> ≤ NDVI<sub>ATI</sub> ≤ NDVI<sub>TVDI</sub>). NDVI<sub>ATI</sub> and NDVI<sub>TVDI</sub> were applied to divide the whole CLP. NDVI<sub>0</sub> was lower than NDVI<sub>ATI</sub> and merely used for calculating TVDI (not shown in the figure). ATI, the average of ATI and TVDI, and TVDI were assigned to the ATI subregion (NDVI ≤ NDVI<sub>ATI</sub>), the ATI/TVDI subregion (NDVI<sub>ATI</sub> < NDVI ≤ NDVI<sub>TVDI</sub>), and the TVDI subregion (NDVI > NDVI<sub>TVDI</sub>), respectively. RSM<sub>ATI</sub> and RSM<sub>TVDI</sub> were the RSM estimated by the ATI-based and TVDI-based models, respectively, and RSM<sub>ATI/TVDI</sub> was the RSM estimated by the ATI/TVDI joint model. a<sub>ATI</sub>, b<sub>ATI</sub>, a<sub>TVDI</sub>, and b<sub>TVDI</sub> in the equations were coefficients from fitting the ATI values and TVDI values with in situ RSM observations in the ATI subregion and the TVDI subregion, respectively. a<sub>ATI/TVDI</sub> and b<sub>ATI/TVDI</sub> were coefficients from fitting the average value of ATI and TVDI and in situ RSM observations in the ATI/TVDI subregion. After 10 rounds 10-fold cross-calibration, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>ATI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>ATI</mi> <mo>/</mo> <mi>TVDI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>TVDI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> in validation were calculated by averaging R<sub>ATI</sub>, R<sub>ATI/TVDI,</sub> and R<sub>TVDI</sub>, respectively.</p> "> Figure 5
<p>Schematic diagram of the calibration and validation processes with Criterion 2 (NDVI<sub>ATI</sub> < NDVI<sub>TVDI</sub>). NDVI<sub>ATI</sub> and NDVI<sub>TVDI</sub> were applied to divide the whole CLP. NDVI<sub>0</sub> might be lower/greater than NDVI<sub>ATI</sub> and appeared when NDVI<sub>0</sub> was greater than NDVI<sub>ATI</sub>, indicating the calculated TVDI from two NDVI intervals (blue and light orange color regions) in the ATI/TVDI subregion. The value of TVDI with Criterion 2 in the blue color regions (NDVI < NDVI<sub>0</sub>) was calculated based on the dry/wet edge derived from NDVI greater than NDVI<sub>0</sub>. The computed TVDI with Criterion 2 in the light orange color regions (NDVI ≥ NDVI<sub>0</sub>) was the same as that of Criterion 1 (orange color regions in <a href="#remotesensing-13-00589-f004" class="html-fig">Figure 4</a>). For the meaning of the other parameters (RSM<sub>ATI</sub>, RSM<sub>TVDI</sub>, RSM<sub>ATI/TVDI</sub>, R<sub>ATI</sub>, R<sub>ATI/TVDI</sub>, R<sub>TVDI</sub>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>ATI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>ATI</mi> <mo>/</mo> <mi>TVDI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>TVDI</mi> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>), please refer to the caption of <a href="#remotesensing-13-00589-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>Flowchart for comparison of the two criteria.</p> "> Figure 7
<p>Comparison of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi mathvariant="normal">R</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> in validation with Criteria 1 and 2. The standard deviation of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi mathvariant="normal">R</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> for each 8-day period is displayed as error bars (one standard deviation). Maximum <math display="inline"><semantics> <mrow> <mover accent="true"> <mi mathvariant="normal">R</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> in validation less than 0.17 and 0.23 for an individual subregion was not selected with Criterion 1 and Criterion 2, respectively. No optimal NDVI thresholds were selected with Criterion 1 on DOYs 1, 9, 33, 65, 73, 201, 225, and 241, resulting in no estimated RSM maps (missed pink bars). Only the 8-day period of DOY 73 with Criterion 2 could not satisfy the minimum standard (0.23).</p> "> Figure 8
<p>The parameters of the dry and wet edges for 8-day periods in 2017: (<b>a</b>) Slopes and intercepts corresponding to selected NDVI<sub>0</sub>: a<sub>dry</sub>, a<sub>wet</sub>, b<sub>dry</sub>, and b<sub>wet</sub>; (<b>b</b>) correlation coefficients with selected NDVI<sub>0</sub>: <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mrow> <mi>dry</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mrow> <mi>wet</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics></math>.</p> "> Figure 9
<p>Comparison of the estimated RSM area and of the average RSM with each criterion. The standard deviation of RSM of all pixels for each 8-day period is shown as error bars (one standard deviation).</p> "> Figure 10
<p>Comparison of estimated and observed RSM with precipitation at six observation stations in 2017.</p> "> Figure 11
<p>Spatiotemporal pattern of monthly RSM over the CLP in 2017. The location of available RSM observation stations for validation is displayed on each RSM map. White color over the CLP for each monthly RSM map means no value of RSM calculated with Criterion 2.</p> "> Figure 12
<p>Scatter plots of the observed and estimated RSM at the monthly time scale (linear fitting shown by blue lines with 95% confidence interval and 95% prediction interval shaded in pink and orange, respectively). Scores (Pearson’s correlation coefficient (Pearson’s r), adjusted R<sup>2</sup>, root mean square error (RMSE), and mean absolute error (MAE)) were computed using data included in the corresponding subplot boundary. N represents the number of available RSM observation station samples for each month. The associated <span class="html-italic">p</span>-values (<span class="html-italic">p</span> in the subplots) with the correlation coefficients are <0.001.</p> "> Figure 13
<p>The plots of monthly RSM with its area and frequency of the observed RSM (station-based) in 2017. The average RSM (Mean<sub>RSM</sub>), standard deviation (Std<sub>RSM</sub>) of RSM, minimum RSM (Min<sub>RSM</sub>), maximum RSM (Max<sub>RSM</sub>) of all pixels, and the area of the generated RSM were computed monthly.</p> "> Figure 14
<p>Seasonal and yearly RSM: (<b>a1</b>–<b>e1</b>) Scatter plots of the observed and estimated RSM at a seasonal and yearly time scale (linear fitting shown by blue lines with 95% confidence interval and 95% prediction interval shaded in pink and orange, respectively). Scores (Pearson’s r, Adjusted R<sup>2</sup>, RMSE, and MAE) were computed using observed and estimated RSM. N represents the number of available RSM observation station samples for each period. The associated <span class="html-italic">p</span>-values with the correlation coefficients are <0.001; (<b>a2</b>–<b>e2</b>) spatiotemporal pattern of seasonal and yearly RSM over the CLP in 2017. The location of available RSM observation stations for validation is displayed on each RSM map. The white color of seasonal and yearly maps over the CLP means no value of RSM calculated with Criterion 2; (<b>a3</b>–<b>e3</b>) the plots of seasonal and yearly RSM with its area and frequency of the observed RSM (station-based) in 2017. The average RSM (Mean<sub>RSM</sub>), standard deviation (Std<sub>RSM</sub>) of RSM, minimum RSM (Min<sub>RSM</sub>), and maximum RSM (Max<sub>RSM</sub>) of all pixels and the area of the generated RSM were computed.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Satellite Data and Image Pre-Processing
2.3. In Situ Observation Data
3. Principles and Methods
3.1. Subregional RSM Estimation
3.1.1. Apparent Thermal Inertia (ATI)
3.1.2. Temperature Vegetation Dryness Index (TVDI)
3.1.3. RSM Estimation with Criterion 2
3.2. Comparison of the Two Criteria
3.2.1. Calibration and Validation Processes for the Two Criteria
3.2.2. Evaluation of Estimated RSM for the Two Criteria
4. Results and Discussion
4.1. Evaluation of the Optimal NDVI Thresholds
4.1.1. Comparison of Validation Results
4.1.2. The Optimal NDVI Thresholds
4.2. Comparison of Estimated RSM
4.2.1. Evaluation of Estimated RSM at the Regional Scale
4.2.2. Evaluation of Estimated RSM at the Station Scale
4.3. Evaluation of Estimated RSM with Criterion 2
4.3.1. Estimated Monthly RSM
4.3.2. Estimated Seasonal and Yearly RSM
5. Conclusions
- The ATI/TVDI joint models not only have higher applicability than the ATI-based and TVDI-based models for all 8-day periods but also for simultaneous use within different NDVI ranges in the ATI/TVDI subregions for one 8-day period. Thus, in addition to the optimal NDVI thresholds, the additional NDVI thresholds we applied was another improved strategy to acquire wider spatial coverage of RSM estimation.
- NDVI thresholds were optimized for robust RSM estimation with Criterion 2 for each 8-day period over the CLP and the selected optimal thresholds constantly changed throughout the study period. The applicability of Criterion 2, involving spatiotemporal coverage (45 and 38 8-day periods of RSM maps and the total RSM area of 939.52 × 104 km2 and 667.44 × 104 km2 with Criterion 2 and Criterion 1, respectively) and the accuracy (maximum of 0.82 ± 0.007 for Criterion 2 and of 0.75 ± 0.008 for Criterion 1) of estimated RSM, was better than that of Criterion 1.
- The estimated RSM (closer to the observation) with Criterion 2 kept a better trend with the observed RSM at the station scale. Moreover, more estimated RSM with Criterion 2 was observed than with Criterion 1 throughout the period.
- High estimated RSM was observed in the periods when there were records of rainfall events, especially in autumn (mean RSM of 13.91 ± 2.65%)—wetter than other seasons. With a mean annual RSM of 10.16 ± 2.21%, the annual RSM map shows dryer areas in the southeastern part of the CLP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information Theoretic Evaluation of Satellite Soil Moisture Retrievals. Remote Sens. Environ. 2018, 204, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lin, X.; Coles, A.E.; Chen, X. Catchment-Scale Surface Water-Groundwater Connectivity on China’s Loess Plateau. Catena 2017, 152, 268–276. [Google Scholar] [CrossRef]
- Hou, J.; Zhu, H.; Fu, B.; Lu, Y.; Zhou, J. Functional Traits Explain Seasonal Variation Effects of Plant Communities on Soil Erosion in Semiarid Grasslands in the Loess Plateau of China. Catena 2020, 194, 104743. [Google Scholar] [CrossRef]
- Zhao, J.; Van Oost, K.; Chen, L.; Govers, G. Moderate Topsoil Erosion Rates Constrain the Magnitude of the Erosion-Induced Carbon Sink and Agricultural Productivity Losses on the Chinese Loess Plateau. Biogeosciences 2016, 13, 4735–4750. [Google Scholar] [CrossRef] [Green Version]
- Djamai, N.; Magagi, R.; Goïta, K.; Merlin, O.; Kerr, Y.; Roy, A. A Combination of DISPATCH Downscaling Algorithm with CLASS Land Surface Scheme for Soil Moisture Estimation at Fine Scale during Cloudy Days. Remote Sens. Environ. 2016, 184, 1–14. [Google Scholar] [CrossRef]
- Hardy, A.J.; Barr, S.L.; Mills, J.P.; Miller, P.E. Characterising Soil Moisture in Transport Corridor Environments Using Airborne LIDAR and CASI data. Hydrol. Process. 2011, 26, 1925–1936. [Google Scholar] [CrossRef]
- Yee, M.S.; Walker, J.P.; Rüdiger, C.; Parinussa, R.M.; Koike, T.; Kerr, Y.H. A Comparison of SMOS and AMSR2 Soil Moisture Using Representative Sites of the OzNet Monitoring Network. Remote Sens. Environ. 2017, 195, 297–312. [Google Scholar] [CrossRef]
- Zawadzki, J.; Kedzior, M. Soil Moisture Variability over Odra Watershed: Comparison between SMOS and GLDAS Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 110–124. [Google Scholar] [CrossRef]
- Ebrahimi-Khusfi, M.; Alavipanah, S.K.; Hamzeh, S.; Amiraslani, F.; Samany, N.N.; Wigneron, J.-P. Comparison of Soil Moisture Retrieval Algorithms Based on the Synergy Between SMAP and SMOS-IC. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 148–160. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Quintana-Seguí, P. Comparison of Remote Sensing and Simulated Soil Moisture Datasets in Mediterranean Landscapes. Remote Sens. Environ. 2016, 180, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Pardé, M.; Wigneron, J.-P.; Chanzy, A.; Waldteufel, P.; Kerr, Y.; Huet, S. Retrieving Surface Soil Moisture over a Wheat Field: Comparison of Different Methods. Remote Sens. Environ. 2003, 87, 334–344. [Google Scholar] [CrossRef]
- Holgate, C.M.; De Jeu, R.; Van Dijk, A.; Liu, Y.; Renzullo, L.; Vinodkumar; Dharssi, I.; Parinussa, R.; Van Der Schalie, R.; Gevaert, A.; et al. Comparison of Remotely Sensed and Modelled Soil Moisture Data Sets across Australia. Remote Sens. Environ. 2016, 186, 479–500. [Google Scholar] [CrossRef]
- Agutu, N.; Awange, J.; Zerihun, A.; Ndehedehe, C.; Kuhn, M.; Fukuda, Y. Assessing Multi-Satellite Remote Sensing, Reanalysis, and Land Surface Models’ Products in Characterizing Agricultural Drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Van Dijk, A.I.; Renzullo, L.J.; Xu, Z.; He, J.; Tian, S.; Zhou, J.; Li, H. On Agricultural Drought Monitoring in Australia Using Himawari-8 Geostationary Thermal Infrared Observations. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102153. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Cheng, F.; Chen, Y. Soil Moisture by Remote Sensing Retrieval in the Tropic of Cancer of Yunnan Province. Pol. J. Environ. Stud. 2020, 29, 1981–1993. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sens. Environ. 2017, 197, 1–14. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Franz, T.E.; Jones, S.B.; Tuller, M. Mapping Soil Moisture with the OPtical TRApezoid Model (OPTRAM) Based on Long-Term MODIS Observations. Remote Sens. Environ. 2018, 211, 425–440. [Google Scholar] [CrossRef]
- Hashemian, M.; Ryu, D.; Crow, W.T.; Kustas, W.P. Improving Root-Zone Soil Moisture Estimations Using Dynamic Root Growth and Crop Phenology. Adv. Water Resour. 2015, 86, 170–183. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Berg, A.A.; Champagne, C.; Omasa, K. Estimation of Soil Moisture Using Optical/Thermal Infrared Remote Sensing in the Canadian Prairies. ISPRS J. Photogramm. Remote Sens. 2013, 83, 94–103. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.-W.; Shi, J.-J.; Huang, J.-F. Soil Moisture Monitoring Based on Land Surface Temperature-Vegetation Index Space Derived from MODIS Data. Pedosphere 2014, 24, 450–460. [Google Scholar] [CrossRef]
- Taktikou, E.; Papaioannou, G.; Bourazanis, G.; Kerkides, P. Soil Moisture Assessment from MODIS data. Desalination Water Treat. 2017, 99, 59–71. [Google Scholar] [CrossRef]
- Phillips, A.J.; Newlands, N.K.; Liang, S.H.; Ellert, B.H. Integrated Sensing of Soil Moisture at the Field-Scale: Measuring, Modeling and Sharing for Improved Agricultural Decision Support. Comput. Electron. Agric. 2014, 107, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wen, J.; Su, Z.; Van Der Velde, R.; Timmermans, J.; Liu, R.; Liu, Y.; Li, Z. Soil Moisture Mapping over the Chinese Loess Plateau Using ENVISAT/ASAR data. Adv. Space Res. 2009, 43, 1111–1117. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M.; Loumagne, C.; Ansart, P.; Anguela, T. Analysis of TerraSAR-X Data and Their Sensitivity to Soil Surface Parameters over Bare Agricultural Fields. Remote Sens. Environ. 2008, 112, 4370–4379. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Ge, Y.; Wang, J.; Heuvelink, G.B. Deriving Temporally Continuous Soil Moisture Estimations at Fine Resolution by Downscaling Remotely Sensed Product. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 8–19. [Google Scholar] [CrossRef]
- Mulder, V.; De Bruin, S.; Schaepman, M.; Mayr, T. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Van Doninck, J.; Peters, J.; De Baets, B.; De Clercq, E.M.; Ducheyne, E.I.; Verhoest, N.E.C. The Potential of Multitemporal Aqua and Terra MODIS Apparent Thermal Inertia as a Soil Moisture Indicator. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 934–941. [Google Scholar] [CrossRef]
- Price, J.C. On the Analysis of Thermal Infrared Imagery: The Limited Utility of Apparent Thermal Inertia. Remote. Sens. Environ. 1985, 18, 59–73. [Google Scholar] [CrossRef]
- Taktikou, E.; Bourazanis, G.; Papaioannou, G.; Kerkides, P. Prediction of Soil Moisture from Remote Sensing Data. Procedia Eng. 2016, 162, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Luo, G.-P.; Wang, J.-Y. Development of an ATI-NDVI Method for Estimation of Soil Moisture from MODIS data. Int. J. Remote. Sens. 2014, 35, 3797–3815. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Omasa, K.; Shimizu, Y. Comparative Evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for Water Stress Detection in Semi-arid Regions of Iran. ISPRS J. Photogramm. Remote Sens. 2012, 68, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, N.; Zhao, R.; Ma, X. Soil Water Content Monitoring Using Joint Application of PDI and TVDI Drought Indices. Remote Sens. Lett. 2020, 11, 455–464. [Google Scholar] [CrossRef]
- Lu, X.J.; Zhou, B.; Yan, H.B.; Luo, L.; Huang, Y.H.; Wu, C.L. Remote Sensing Retrieval of Soil Moisture in Guangxi Based on Ati and Tvdi Models. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Li, L.; Zhang, T.; Chen, L.; Zhao, J.; Hu, S.; Cheng, L.; Liu, W. Soil Moisture Estimation for the Chinese Loess Plateau using MODIS-derived ATI and TVDI. Remote Sens. 2020, 12, 3040. [Google Scholar] [CrossRef]
- Su, C.; Fu, B. Evolution of Ecosystem Services in the Chinese Loess Plateau under Climatic and Land Use Changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Tasumi, M.; Kimura, R. Estimation of Volumetric Soil Water Content over the Liudaogou River Basin of the Loess Plateau Using the SWEST Method with Spatial and Temporal Variability. Agric. Water Manag. 2013, 118, 22–28. [Google Scholar] [CrossRef]
- Xin, Z.; Yu, X.; Li, Q.; Lu, X.X. Spatiotemporal Variation in Rainfall Erosivity on the Chinese Loess Plateau during the Period 1956–2008. Reg. Environ. Chang. 2010, 11, 149–159. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zhao, J.-P.; Zhang, X.; Bao, H.-Y.; Tong, Q.-X.; Wang, X.-Y.; Liao, C.-H. Monitoring Land Surface Soil Moisture: Co-inversion of Visible, Infrared and Passive Microwave Sensing Data. J. Infrared Millim. Waves 2012, 31, 137–142. [Google Scholar] [CrossRef]
- Claps, P.; LaGuardia, G. Assessing Spatial Variability of Soil Water Content through Thermal Inertia and NDVI. Remote Sens. Agric. Ecosyst. Hydrol. V 2004, 5232, 378–388. [Google Scholar] [CrossRef]
- Pablos, M.; González-Zamora, Á.; Sanchez, N.; Martínez-Fernández, J. Assessment of Root Zone Soil Moisture Estimations from SMAP, SMOS and MODIS Observations. Remote Sens. 2018, 10, 981. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Roger, J.C.; Ray, J.P. MODIS Surface Reflectance User’s Guide Collection 6. Available online: http://modis-sr.ltdri.org (accessed on 15 November 2018).
- Qin, J.; Yang, K.; Lu, N.; Chen, Y.; Zhao, L.; Han, M. Spatial Upscaling of in-Situ Soil Moisture Measurements Based on MODIS-Derived Apparent Thermal Inertia. Remote Sens. Environ. 2013, 138, 1–9. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.; Hunt, R. Narrowband to Broadband Conversions of Land Surface Albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Van Der Sande, C.J.; Grootaers, I.; Feyen, J. Soil Moisture Retrieval Using Thermal Inertia, Determined with Visible and Thermal Spaceborne Data, Validated for European Forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Minacapilli, M.; Cammalleri, C.; Ciraolo, G.; D’Asaro, F.; Iovino, M.; Maltese, A. Thermal Inertia Modeling for Soil Surface Water Content Estimation: A Laboratory Experiment. Soil Sci. Soc. Am. J. 2012, 76, 92–100. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Shen, R.; Yu, P.; Yan, J.; Wang, Y. Retrieving Soil Moisture by TVDI Based on Different Vegetation Index: A Case Study of Shanxi Province. In Proceedings of the International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 418–422. [Google Scholar] [CrossRef]
- Runping, S.; Jing, Y. Soil Moisture Retrieval through Satellite Data for Gansu and Xinjiang Region of China. Pak. J. Meterorol. 2012, 9, 93–98. [Google Scholar]
- Tagesson, T.; Horion, S.; Nieto, H.; Fornies, V.Z.; González, G.M.; Bulgin, C.; Ghent, D.; Fensholt, R. Disaggregation of SMOS Soil Moisture over West Africa Using the Temperature and Vegetation Dryness Index Based on SEVIRI land Surface Parameters. Remote Sens. Environ. 2018, 206, 424–441. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, C.; Lin, Y.; Lei, Y. Surface Temperature Correction in TVDI to Evaluate Soil Moisture over a Large Area. J. Food Agric. Environ. 2010, 8, 1141–1145. [Google Scholar]
- Holidi, H.; Armanto, M.E.; Damiri, N.; Putranto, D.D.A. Characteristics of Selected Peatland uses and Soil Moisture Based on TVDI. J. Ecol. Eng. 2019, 20, 194–200. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Jiang, H.; Mao, L.; Yu, Z. Estimating Soil Moisture Using Temperature–Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain. Int. J. Remote Sens. 2011, 32, 1165–1177. [Google Scholar] [CrossRef]
- Peng, W.; Wang, J.; Zhang, J.; Zhang, Y. Soil Moisture Estimation in the Transition Zone from the Chengdu Plain Region to the Longmen Mountains by Field Measurements and LANDSAT 8 OLI/TIRS-Derived Indices. Arab. J. Geosci. 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Yang, R.; Wang, H.; Hu, J.; Cao, J.; Yang, Y. An Improved Temperature Vegetation Dryness Index (iTVDI) and Its Applicability to Drought Monitoring. J. Mt. Sci. 2017, 14, 2284–2294. [Google Scholar] [CrossRef]
- Song, Y.; Fang, S.; Yang, Z.; Shen, S. Drought Indices Based on MODIS Data Compared over a Maize-Growing Season in Songliao Plain, China. J. Appl. Remote Sens. 2018, 12, 046003. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Floyd, I.; Brown, S. Satellite Imagery-Based SERVES Soil Moisture for the Analysis of Soil Moisture Initialization Input Scale Effects on Physics-Based Distributed Watershed Hydrologic Modelling. Remote Sens. 2020, 12, 2108. [Google Scholar] [CrossRef]
- Aktas, A.; Ustundag, B.B. Soil Moisture Monitoring of the Plant Root Zone by Using Phenology as Context in Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6051–6063. [Google Scholar] [CrossRef]
- Han, J.; Mao, K.; Xu, T.; Guo, J.; Zuo, Z.; Gao, C. A Soil Moisture Estimation Framework Based on the CART Algorithm and Its Application in China. J. Hydrol. 2018, 563, 65–75. [Google Scholar] [CrossRef]
- Jiao, Q.; Li, R.; Wang, F.; Mu, X.; Li, P.; An, C. Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets. Remote Sens. 2016, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, J.; Sun, Q.; Wang, X.; Guo, Y.; Li, J. Soil Moisture Retrieval From AMSR-E Data in Xinjiang (China): Models and Validation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 117–127. [Google Scholar] [CrossRef]
- Qin, Q.; Ghulam, A.; Zhu, L.; Wang, L.; Li, J.; Nan, P. Evaluation of MODIS Derived Perpendicular Drought Index for Estimation of Surface Dryness over Northwestern China. Int. J. Remote Sens. 2008, 29, 1983–1995. [Google Scholar] [CrossRef]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying Drought Phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Li, L.; Bakelants, L.; Solana, C.; Canters, F.; Kervyn, M. Dating Lava Flows of Tropical Volcanoes by Means of Spatial Modeling of Vegetation Recovery. Earth Surf. Process. Landforms 2017, 43, 840–856. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Wang, J.; Shi, Y. Drought Variation Trends in Different Subregions of the Chinese Loess Plateau over the past Four Decades. Agric. Water Manag. 2012, 115, 167–177. [Google Scholar] [CrossRef]
Cases | Model Used 1 | Subregions | Optimal NDVI Thresholds 2 | Relationships 3 | If Overlaps |
---|---|---|---|---|---|
1 | ATI | ATI | NDVIATI | - | No |
2 | ATI/TVDI | ATI/TVDI | NDVI0/NDVIATI/NDVITVDI | NDVIATI < NDVITVDI | No |
3 | TVDI | TVDI | NDVI0/NDVITVDI | - | No |
4 | ATI | ATI | NDVIATI | NDVIATI < NDVITVDI | No |
TVDI | TVDI | NDVI0/NDVITVDI | NDVIATI ≥ NDVITVDI | Yes | |
5 | ATI | ATI | NDVIATI_a | NDVIATI_a <NDVIATI_j | No |
ATI/TVDI | ATI/TVDI | NDVI0/NDVIATI_j/NDVITVDI | NDVIATI_a ≥ NDVIATI_j | Yes | |
6 | ATI/TVDI | ATI/TVDI | NDVI0_j/NDVIATI/NDVITVDI_j | NDVITVDI_j < NDVITVDI_t | No |
TVDI | TVDI | NDVI0_t/NDVITVDI_t | NDVITVDI_j ≥ NDVITVDI_t | Yes | |
7 | ATI ATI/TVDI TVDI | ATI ATI/TVDI TVDI | NDVIATI_a NDVI0_j/NDVIATI_j/NDVITVDI_j NDVI0_t/NDVITVDI_t | NDVIATI_a < NDVIATI_j&NDVITVDI_j < NDVITVDI_t | No |
NDVITVDI_t ≥ NDVIATI_a ≥ NDVIATI_j | Yes | ||||
NDVITVDI_j ≥ NDVITVDI_t ≥ NDVIATI_a | Yes | ||||
NDVIATI_a ≥ NDVITVDI_t | Yes |
DOY | Month/Season | No. of Stations | Models | ± Std | Optimal NDVI0 | Optimal NDVIATI | Optimal NDVITVDI |
---|---|---|---|---|---|---|---|
1 | Jan/Winter | 72 | ATI/TVDI | 0.50 ± 0.015 | 0.01 | 0.19 | 0.45 |
9 | Jan/Winter | 69 | ATI/TVDI | 0.78 ± 0.009 | 0.05 | 0.19 | 0.54 |
17 | Jan/Winter | 75 | ATI/TVDI | 0.62 ± 0.017 | 0.34 | 0.22 | 0.55 |
TVDI | 0.56 ± 0.010 | 0.00 | 0.12 | ||||
25 | Jan/Winter | 74 | ATI/TVDI | 0.60 ± 0.012 | 0.09 | 0.15 | 0.44 |
33 | Feb/Winter | 75 | TVDI | 0.49 ± 0.015 | 0.08 | 0.14 | |
ATI | 0.40 ± 0.021 | 0.16 | |||||
ATI/TVDI | 0.78 ± 0.009 | 0.05 | 0.19 | 0.54 | |||
41 | Feb/Winter | 86 | ATI/TVDI | 0.57 ± 0.012 | 0.10 | 0.20 | 0.35 |
49 | Feb/Winter | 101 | ATI/TVDI | 0.51 ± 0.022 | 0.03 | 0.18 | 0.24 |
TVDI | 0.43 ± 0.026 | 0.13 | 0.19 | ||||
57 | Mar/Spring | 157 | ATI/TVDI | 0.45 ± 0.019 | 0.00 | 0.19 | 0.27 |
TVDI | 0.44 ± 0.012 | 0.07 | 0.17 | ||||
65 | Mar/Spring | 196 | ATI/TVDI | 0.43 ± 0.021 | 0.14 | 0.13 | 0.15 |
81 | Mar/Spring | 209 | ATI/TVDI | 0.44 ± 0.022 | 0.44 | 0.29 | 0.68 |
89 | Apr/Spring | 209 | ATI/TVDI | 0.55 ± 0.021 | 0.03 | 0.29 | 0.56 |
97 | Apr/Spring | 210 | ATI/TVDI | 0.38 ± 0.028 | 0.04 | 0.11 | 0.14 |
105 | Apr/Spring | 210 | ATI/TVDI | 0.31 ± 0.034 | 0.50 | 0.47 | 0.63 |
113 | Apr/Spring | 210 | ATI/TVDI | 0.30 ± 0.058 | 0.00 | 0.08 | 0.14 |
121 | May/Spring | 210 | ATI/TVDI | 0.35 ± 0.049 | 0.29 | 0.30 | 0.39 |
129 | May/Spring | 211 | ATI/TVDI | 0.25 ± 0.040 | 0.15 | 0.22 | 0.25 |
137 | May/Spring | 211 | ATI/TVDI | 0.40 ± 0.025 | 0.12 | 0.02 | 0.19 |
145 | May/Spring | 211 | ATI/TVDI | 0.63 ± 0.017 | 0.15 | 0.25 | 0.27 |
ATI/TVDI | 0.61 ± 0.044 | 0.19 | 0.00 | 0.20 | |||
153 | Jun/Summer | 211 | ATI/TVDI | 0.51 ± 0.028 | 0.05 | 0.00 | 0.24 |
161 | Jun/Summer | 208 | ATI | 0.60 ± 0.010 | 0.28 | ||
169 | Jun/Summer | 211 | ATI/TVDI | 0.33 ± 0.019 | 0.10 | 0.22 | 0.34 |
177 | Jun/Summer | 211 | ATI/TVDI | 0.48 ± 0.028 | 0.01 | 0.07 | 0.24 |
TVDI | 0.50 ± 0.026 | 0.01 | 0.57 | ||||
185 | Jul/Summer | 213 | ATI/TVDI | 0.48 ± 0.014 | 0.12 | 0.21 | 0.32 |
193 | Jul/Summer | 212 | ATI | 0.23 ± 0.036 | 0.27 | ||
201 | Jul/Summer | 212 | ATI/TVDI | 0.53 ± 0.020 | 0.17 | 0.50 | 0.59 |
209 | Aug/Summer | 212 | ATI/TVDI | 0.51 ± 0.019 | 0.03 | 0.26 | 0.32 |
217 | Aug/Summer | 213 | ATI/TVDI | 0.50 ± 0.037 | 0.25 | 0.29 | 0.33 |
225 | Aug/Summer | 213 | ATI/TVDI | 0.43 ± 0.021 | 0.29 | 0.32 | 0.38 |
233 | Aug/Summer | 213 | TVDI | 0.57 ± 0.017 | 0.43 | 0.55 | |
241 | Sep/Autumn | 213 | TVDI | 0.42 ± 0.024 | 0.01 | 0.52 | |
249 | Sep/Autumn | 213 | ATI/TVDI | 0.63 ± 0.010 | 0.29 | 0.22 | 0.32 |
257 | Sep/Autumn | 213 | ATI/TVDI | 0.52 ± 0.020 | 0.16 | 0.14 | 0.28 |
ATI | 0.54 ± 0.033 | 0.26 | |||||
TVDI | 0.51 ± 0.017 | 0.47 | 0.54 | ||||
265 | Sep/Autumn | 212 | ATI/TVDI | 0.49 ± 0.017 | 0.16 | 0.35 | 0.41 |
TVDI | 0.52 ± 0.020 | 0.10 | 0.52 | ||||
273 | Oct/Autumn | 212 | ATI/TVDI | 0.32 ± 0.028 | 0.38 | 0.38 | 0.48 |
281 | Oct/Autumn | 212 | ATI/TVDI | 0.34 ± 0.038 | 0.00 | 0.33 | 0.39 |
289 | Oct/Autumn | 212 | ATI/TVDI | 0.36 ± 0.027 | 0.01 | 0.20 | 0.23 |
297 | Oct/Autumn | 212 | ATI/TVDI | 0.47 ± 0.015 | 0.05 | 0.21 | 0.25 |
305 | Nov/Autumn | 212 | ATI/TVDI | 0.47 ± 0.021 | 0.06 | 0.13 | 0.17 |
ATI/TVDI | 0.44 ± 0.020 | 0.10 | 0.30 | 0.34 | |||
313 | Nov/Autumn | 213 | ATI/TVDI | 0.47 ± 0.022 | 0.05 | 0.15 | 0.18 |
321 | Nov/Autumn | 189 | TVDI | 0.33 ± 0.007 | 0.10 | 0.10 | |
329 | Nov/Autumn | 185 | ATI/TVDI | 0.71 ± 0.008 | 0.02 | 0.18 | 0.20 |
TVDI | 0.59 ± 0.003 | 0.00 | 0.12 | ||||
337 | Dec/Winter | 185 | ATI/TVDI | 0.74 ± 0.009 | 0.20 | 0.24 | 0.31 |
TVDI | 0.56 ± 0.005 | 0.01 | 0.11 | ||||
345 | Dec/Winter | 185 | ATI/TVDI | 0.66 ± 0.012 | 0.03 | 0.24 | 0.34 |
TVDI | 0.58 ± 0.003 | 0.01 | 0.09 | ||||
353 | Dec/Winter | 185 | ATI/TVDI | 0.71 ± 0.010 | 0.30 | 0.23 | 0.38 |
TVDI | 0.72 ± 0.009 | 0.23 | 0.23 | ||||
361 | Dec/Winter | 182 | ATI/TVDI | 0.82 ± 0.007 | 0.12 | 0.19 | 0.24 |
TVDI | 0.76 ± 0.007 | 0.19 | 0.19 |
Periods (DOY) | Criterion | Model | NDVIATI | NDVITVDI | ± Std | Area (104 km2) |
---|---|---|---|---|---|---|
49 | 1 | ATI/TVDI | 0.14 | 0.64 | 0.38 ± 0.023 | 45.14 |
2 | ATI/TVDI | 0.18 | 0.24 | 0.51 ± 0.022 | 28.58 | |
TVDI | 0.19 | 0.43 ± 0.026 | ||||
105 | 1 | ATI/TVDI | 0.21 | 0.35 | 0.25 ± 0.028 | 18.59 |
2 | ATI/TVDI | 0.47 | 0.63 | 0.31 ± 0.034 | 3.70 | |
153 | 1 | ATI | 0.34 | 0.41 | 0.35 ± 0.016 | 32.93 |
ATI/TVDI | 0.50 ± 0.020 | |||||
2 | ATI/TVDI | 0.00 | 0.24 | 0.51 ± 0.028 | 15.43 | |
161 | 1 | ATI | 0.49 | 0.69 | 0.54 ± 0.008 | 61.17 |
ATI/TVDI | 0.23 ± 0.044 | |||||
TVDI | 0.34 ± 0.044 | |||||
2 | ATI | 0.28 | 0.60 ± 0.010 | 20.38 | ||
249 | 1 | ATI | 0.36 | 0.50 | 0.46 ± 0.049 | 27.78 |
ATI/TVDI | 0.37 ± 0.040 | |||||
2 | ATI/TVDI | 0.22 | 0.32 | 0.63 ± 0.010 | 6.77 | |
289 | 1 | ATI/TVDI | 0.26 | 0.38 | 0.32 ± 0.018 | 15.51 |
2 | ATI/TVDI | 0.20 | 0.23 | 0.36 ± 0.027 | 4.37 |
Station | Longitude (°N) | Latitude (°E) | Elevation (m) | Land cover | Total Precipitation in 2017 (mm) |
---|---|---|---|---|---|
53,553 | 111.22 | 39.85 | 1221.40 | Grassland | 410 |
53,771 | 112.05 | 37.41 | 750.00 | Cropland | 616 |
53,845 | 109.50 | 36.60 | 1180.50 | Urban area | 750.8 |
53,857 | 110.18 | 36.06 | 110.18 | Cropland | 549 |
57,031 | 108.55 | 34.83 | 1012.70 | Cropland | 662 |
57,048 | 108.72 | 34.40 | 472.80 | Cropland | 708 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Li, L.; Zhang, T.; Chen, L.; Zhao, J.; Liu, W.; Cheng, L.; Hu, S.; Yang, L.; Wen, M. Improving Soil Moisture Estimation by Identification of NDVI Thresholds Optimization: An Application to the Chinese Loess Plateau. Remote Sens. 2021, 13, 589. https://doi.org/10.3390/rs13040589
Yuan L, Li L, Zhang T, Chen L, Zhao J, Liu W, Cheng L, Hu S, Yang L, Wen M. Improving Soil Moisture Estimation by Identification of NDVI Thresholds Optimization: An Application to the Chinese Loess Plateau. Remote Sensing. 2021; 13(4):589. https://doi.org/10.3390/rs13040589
Chicago/Turabian StyleYuan, Lina, Long Li, Ting Zhang, Longqian Chen, Jianlin Zhao, Weiqiang Liu, Liang Cheng, Sai Hu, Longhua Yang, and Mingxin Wen. 2021. "Improving Soil Moisture Estimation by Identification of NDVI Thresholds Optimization: An Application to the Chinese Loess Plateau" Remote Sensing 13, no. 4: 589. https://doi.org/10.3390/rs13040589
APA StyleYuan, L., Li, L., Zhang, T., Chen, L., Zhao, J., Liu, W., Cheng, L., Hu, S., Yang, L., & Wen, M. (2021). Improving Soil Moisture Estimation by Identification of NDVI Thresholds Optimization: An Application to the Chinese Loess Plateau. Remote Sensing, 13(4), 589. https://doi.org/10.3390/rs13040589