Formation Mechanism for Upland Low-Relief Surface Landscapes in the Three Gorges Region, China
"> Figure 1
<p>Overview of the study area. (<b>a</b>) Map showing the location of the Three Gorges region, in the Yangtze River basin. (<b>b</b>) The mean precipitation over the study region obtained from Tropical Rainfall Measuring Mission. (<b>c</b>) Relief map showing study area elevations. The red lines are major faults.</p> "> Figure 2
<p>Determining the optimal statistical window for topographic relief. (<b>a</b>) The coefficient of determination (R<sup>2</sup>) between the window area and topographic relief, x and y represent window area and topographic relief, respectively; (<b>b</b>) mean change point graph. The curve slope changes from steep to shallow at the 18th point, so 18 × 18 pts was selected as the window size.</p> "> Figure 3
<p>The spatial distribution and classification of the Three Gorges region low-relief surfaces.</p> "> Figure 4
<p>(<b>a</b>) Relationship between χ map and low-relief surfaces distribution in the Three Gorges region. Dashed white ovals show the location of the area shown in panel b. (<b>b</b>) Detailed χ map for the Baolong and Mashui River networks. (<b>c</b>) Geomorphic parameters showing the direction of the predicted divide migration. Black and white bars represent data from the Baolong River in the north, and the Mashui River in the south, respectively.</p> "> Figure 5
<p>Topographic swath (S) profiles in the Three Gorges study area: (<b>a</b>) Locations of the S1–4, the length of S1–3 is 150 km and S4 running parallel to the Yangtze River, together with the low-relief surface distribution (planar shown as green); (<b>b</b>,<b>c</b>) The upper red curve and the lower blue curve represent maximum and minimum elevations, respectively, with the solid gray line in the middle representing mean elevation. Gray bars indicate low-relief surface patches along the topographic profile.</p> "> Figure 6
<p>χ-transformed profiles of all major streams in the study area catchments. The red and gray lines represent profiles of the main streams and tributaries, respectively.</p> "> Figure 7
<p>Relationship between individual low-relief surface patches and streams: (<b>a</b>–<b>c</b>) Landscape perspective view captured using Google Earth imagery (locations are those shown in the black boxes in <a href="#remotesensing-12-03899-f004" class="html-fig">Figure 4</a>a). The blue lines represent the exterior rivers of the low-relief surface landscape, while red lines represent interior rivers. The white arrows indicate flow direction, the black triangles shows the knickpoint, and the yellow points represents the downstream point common to all the rivers in the figure; (<b>d</b>–<b>f</b>) χ-plots for the major rivers in (<b>a</b>–<b>c</b>).</p> "> Figure 8
<p>Topographic evolution in a Divide and Capture (DAC) landscape model, showing river reorganization and low-relief surfaces. (<b>a</b>–<b>c</b>) represent the evolutionary sequence of the rivers and associated landforms in a region undergoing tectonic uplift. The rivers are colored based on their χ value, and the larger the χ value, the stronger the river’s ability to capture. The white arrows indicate the direction of drainage divide migration, and the green surface is the low-relief surface formed by river piracy (see also <a href="#app1-remotesensing-12-03899" class="html-app">Supplementary movie S1</a>).</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Low-Relief Surface Mapping
3.3. Swath Profile
3.4. Numerical Analytical Model
4. Results
4.1. Distribution of Upland Low-Relief Surfaces
4.2. Chi (χ) Map Analysis
4.3. Topographic Analysis
4.4. χ-Transformed Profiles (χ-Plots)
4.5. Numerical Analytical Model
5. Discussion
5.1. Drainage Evolution and River Basin Reorganization
5.2. Was It Quasi-Plain Uplift or River Piracy Which Generated the Low-Relief Surfaces?
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Davis, W.M. The geographical cycle. Geogr. J. 1899, 14, 481–504. [Google Scholar] [CrossRef]
- Pan, B.; Hu, Z.; Wang, J.; Vandenberghe, J.; Hu, X.; Wen, Y.; Li, Q.; Cao, B. The approximate age of the planation surface and the incision of the Yellow River. Palaeogeography 2012, 356–357, 54–61. [Google Scholar] [CrossRef]
- Vandenberghe, J.F. From planation surfaces to river valleys. Bull. Soc. Géogr. Liège 2016, 67, 93–106. [Google Scholar]
- Ritter, D. Landscape analysis and the search for geomorphic unity. GSA Bull. 1988, 100, 160–171. [Google Scholar] [CrossRef]
- Phillips, J.D. Erosion, isostatic response, and the missing peneplains. Geomorphology 2002, 45, 225–241. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Y.; Zhang, P. New advances in planation surface research. Adv. Earth Sci. 2020, 35, 378–388, (In Chinese with English Abstract). [Google Scholar]
- Clark, M.K.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W. Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau. J. Geophys. Res. Earth Surf. 2006, 111, F03002. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; DiBiase, R.A.; Ouimet, W.B.; Forte, A.M. Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms. Geology 2017, 45, 91–94. [Google Scholar] [CrossRef]
- Yang, R.; Willett, S.D.; Goren, L. In situ low-relief landscape formation as a result of river network disruption. Nature 2015, 520, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Jaiswara, N.K.; Pandey, P.; Pandey, A.K. Mio-Pliocene piracy, relict landscape and drainage reorganization in the Namcha Barwa syntaxis zone of eastern Himalaya. Sci. Rep. 2019, 9, 17585. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Shao, L.; Qiao, P.; Zhao, Z.; van Hinsbergen, D.J.J. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau. Earth Planet Sci. Lett. 2018, 496, 120–131. [Google Scholar] [CrossRef]
- Sheng, Y. The Valley Landform of the Upper Yangtze; Science Press: Beijing, China, 1965. (In Chinese) [Google Scholar]
- Tian, L.; Li, P.; Luo, Y. Valley Development History of Three Gorges of Yangtze River; Press of Southwest Jiaotong University: Chengdu, China, 1996. (In Chinese) [Google Scholar]
- Xie, S.; Yuan, D.; Wang, J. Faetures of the planation surface in the surrounding area of the three gorges of Yangtze. Carsologica Sin. 2006, 25, 40–45, (In Chinese with English Abstract). [Google Scholar]
- Li, J.; Xie, S.; Kuang, M. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology 2001, 41, 125–135. [Google Scholar] [CrossRef]
- Ding, J. The identification of the physiographic epoch in west Hubei plateau. Carsologica Sin. 1987, 03, 81–88, (In Chinese with English Abstract). [Google Scholar]
- Yang, D.; Ren, L. The summit level in western Hubei mountain region. Mt. Res. 1997, 15, 187–191, (In Chinese with English Abstract). [Google Scholar]
- Wang, L.; Niu, Z.; Zhao, X.; Tu, B. Discovery of high-elevation gravel during middle Pleistocene in Jianshi area and its significance. Yangtze River 2010, 41, 58–60, (In Chinese with English Abstract). [Google Scholar]
- Clark, M.K.; Schoenbohm, L.M.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W.; Wang, E.; Chen, L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 2004, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Li, X.; Li, S. The new view points of qurer and crustal movement, valley deep trough and palaeoflood, from Fengjie county to Yunyang county in three gorges reservoir area. Quat. Sci. 2005, 25, 24–27. (In Chinese) [Google Scholar]
- Wu, S.; Shi, L.; Wang, R.; Tan, C.; Hu, D.; Mei, Y.; Xu, R. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River. Eng. Geol. 2001, 59, 51–58. [Google Scholar] [CrossRef]
- Li, H.; Huang, X.; Deng, Q.; Kusky, T.M.; Cai, X. Mapping of planation surfaces in the southwest region of Hubei Province, China—Using the DEM-derived painted relief model. J. Earth Sci. 2012, 23, 719–730. [Google Scholar] [CrossRef]
- Arseni, M.; Voiculescu, M.; Georgescu, L.P.; Iticescu, C.; Rosu, A. Testing different interpolation methods based on single beam echosounder river surveying. Case study: Siret River. ISPRS Int. J. Geo Inf. 2019, 8, 507. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, Y.; Yan, C.; Dai, H.; Liu, G. A Robust algorithm of multiquadric method based on an improved Huber loss function for interpolating remote-sensing-derived elevation data sets. Remote Sens. 2015, 7, 3347–3371. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, F.J.; Mills, J.P. Accuracy assessment of lidar-derived digital elevation models. Photogramm. Rec. 2008, 23, 148–169. [Google Scholar] [CrossRef]
- Elkhrachy, I. Vertical accuracy assessment for SRTM and ASTER digital elevation models: A case study of Najran city, Saudi Arabia. Ain Shams Eng. J. 2018, 9, 1807–1817. [Google Scholar] [CrossRef]
- Boulton, S.J.; Stokes, M. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology 2018, 310, 168–187. [Google Scholar] [CrossRef]
- Liu, F.; Gao, H.; Pan, B.; Li, Z.; Su, H. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China. Front. Earth Sci. 2018, 13, 55–74. [Google Scholar] [CrossRef]
- Smith, M.J.; Rose, J.; Booth, S. Geomorphological mapping of glacial landforms from remotely sensed data: An evaluation of the principal data sources and an assessment of their quality. Geomorphology 2006, 76, 148–165. [Google Scholar] [CrossRef]
- Strobl, M.; Hetzel, R.; Niedermann, S.; Ding, L.; Zhang, L. Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne. Geomorphology 2012, 153–154, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Haider, V.L.; Kropáček, J.; Dunkl, I.; Wagner, B.; von Eynatten, H. Identification of peneplains by multi-parameter assessment of digital elevation models. Earth Surf. Process. Landf. 2015, 40, 1477–1492. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy algorithms. Inf. Control 1968, 12, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.; Sambridge, M. Modelling landscape evolution on geological time scales A new method based onirregular spatial discretization. Basin Res. 1997, 9, 27–52. [Google Scholar] [CrossRef] [Green Version]
- Willett, S.D.; McCoy, S.W.; Perron, J.T.; Goren, L.; Chen, C.Y. Dynamic reorganization of River Basins. Science 2014, 343, 1248765. [Google Scholar] [CrossRef] [PubMed]
- Perron, J.T.; Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf. 2013, 38, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Struth, L.; Giachetta, E.; Willett, S.D.; Owen, L.A.; Tesón, E. Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surf. Process. Landf. 2020, 45, 1789–1804. [Google Scholar] [CrossRef]
- Whipple, K.X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 2004, 32, 151–185. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. In Tectonics, Climate, and Landscape Evolution; The Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Mudd, S.M.; Attal, M.; Milodowski, D.T.; Grieve, S.W.D.; Valters, D.A. A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. J. Geophys. Res. Earth Surf. 2014, 119, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Forte, A.M.; Whipple, K.X. Short communication: The topographic analysis kit (TAK) for TopoToolbox. Earth Surf. Dyn. 2019, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Gallen, S.F.; Wegmann, K.W. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf. Dyn. 2017, 5, 161–186. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, D.; Zhang, H.; Li, C.; Xiao, L.; Li, Y.; Hao, Y. The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles. Tectonophysics 2019, 759, 15–29. [Google Scholar] [CrossRef]
- Telbisz, T.; Kovács, G.; Székely, B.; Szabó, J. Topographic swath profile analysis: A generalization and sensitivity evaluation of a digital terrain analysis tool. Z. Geomorphol. 2013, 57, 485. [Google Scholar] [CrossRef]
- Hergarten, S.; Robl, J.; Stüwe, K. Extracting topographic swath profiles across curved geomorphic features. Earth Surf. Dyn. 2014, 2, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Peña, J.V.; Al-Awabdeh, M.; Azañón, J.M.; Galve, J.P.; Booth-Rea, G.; Notti, D. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Comput. Geosci. 2017, 104, 135–150. [Google Scholar] [CrossRef]
- Bishop, P. Long-term landscape evolution: Linking tectonics and surface processes. Earth Surf. Process. Landf. 2007, 32, 329–365. [Google Scholar] [CrossRef]
- Codilean, A.T.; Bishop, P.; Hoey, T.B. Surface process models and the links between tectonics and topography. Prog. Phys. Geogr. 2006, 30, 307–333. [Google Scholar] [CrossRef] [Green Version]
- Goren, L.; Willett, S.D.; Herman, F.; Braun, J. Coupled numerical-analytical approach to landscape evolution modeling. Earth Surf. Process. Landf. 2014, 39, 522–545. [Google Scholar] [CrossRef]
- Temme, A.J.A.M.; Claessens, L.; Veldkamp, A.; Schoorl, J.M. Evaluating choices in multi-process landscape evolution models. Geomorphology 2011, 125, 271–281. [Google Scholar] [CrossRef]
- Tucker, G.E.; Hancock, G.R. Modelling landscape evolution. Earth Surf. Process Landf. 2010, 35, 28–50. [Google Scholar] [CrossRef]
- Willgoose, G. Mathematical modeling of whole landscape evolution. Annu. Rev. Earth Planet. Sci. 2005, 33, 443–459. [Google Scholar] [CrossRef]
- Willett, S.D.; Slingerland, R.; Hovius, N. Uplift, shortening, and steady state topography in active mountain belts. Am. J. Sci. 2001, 301, 455–485. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.D. Persistent drainage migration in a numerical landscape evolution model. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.; Willett, S.D. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 2013, 180–181, 170–179. [Google Scholar] [CrossRef]
- Tucker, G.; Lancaster, S.; Gasparini, N.; Bras, R. The channel-hillslope integrated landscape development model (CHILD). Landsc. Eros. Evol. Modeling 2001, 349–388. [Google Scholar] [CrossRef]
- Zondervan, J.R.; Stokes, M.; Boulton, S.J.; Telfer, M.W.; Mather, A.E. Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth Planet. Sci. Lett. 2020, 538, 116221. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.-K.; Fan, H.; Lou, J.-P.; Yang, K. Controls on geomorphic characteristics of the Xiaohei River basin in the upper Lancang-Mekong, China. J. Mt. Sci. 2020, 17, 1032–1044. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Willett, S.D. Graphical methods of river profile analysis to unravel drainage area change, uplift and erodibility contrasts in the Central Range of Taiwan. Earth Surf. Process. Landf. 2016, 41, 2223–2238. [Google Scholar] [CrossRef]
- Fan, N.; Chu, Z.; Jiang, L.; Hassan, M.A.; Lamb, M.P.; Liu, X. Abrupt drainage basin reorganization following a Pleistocene river capture. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Niu, Z.; Zhao, X.; Tu, B. Study of characteristics of layered landforms depositions and geomorphic evolution in the Qingjiang River Basin. Yangtze River 2010, 41, 18–20, (In Chinese with English Abstract). [Google Scholar]
- Kirby, E.; Whipple, K. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Lavé, J. Landscape inversion by stream piracy. Nature 2015, 520, 442–443. [Google Scholar] [CrossRef] [PubMed]
Low-Relief Surface | Elevation (m) | Relief (m) |
---|---|---|
Higher elevation surface | 1700–2000 | 350 |
Lower elevation surface | 1200–1500 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, L.; Wang, L.; Li, C.; Li, H.; Wang, X.; Wang, S. Formation Mechanism for Upland Low-Relief Surface Landscapes in the Three Gorges Region, China. Remote Sens. 2020, 12, 3899. https://doi.org/10.3390/rs12233899
Lv L, Wang L, Li C, Li H, Wang X, Wang S. Formation Mechanism for Upland Low-Relief Surface Landscapes in the Three Gorges Region, China. Remote Sensing. 2020; 12(23):3899. https://doi.org/10.3390/rs12233899
Chicago/Turabian StyleLv, Lingyun, Lunche Wang, Chang’an Li, Hui Li, Xinsheng Wang, and Shaoqiang Wang. 2020. "Formation Mechanism for Upland Low-Relief Surface Landscapes in the Three Gorges Region, China" Remote Sensing 12, no. 23: 3899. https://doi.org/10.3390/rs12233899
APA StyleLv, L., Wang, L., Li, C., Li, H., Wang, X., & Wang, S. (2020). Formation Mechanism for Upland Low-Relief Surface Landscapes in the Three Gorges Region, China. Remote Sensing, 12(23), 3899. https://doi.org/10.3390/rs12233899